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THE STABILITY OF LINEAR MAPPINGS IN
BANACH MODULES ASSOCIATED WITH
A GENERALIZED JENSEN MAPPING

SuNG JIN LEE*

ABSTRACT. Let X and Y be vector spaces. It is shown that a mapping
f+ X — Y satisfies the functional equation

Zdﬁl ;i dk
(1) dk (=) =3 f(=5)
j=1

if and only if the mapping f : X — Y is Cauchy additive, and prove the
Cauchy-Rassias stability of the functional equation (f) in Banach modules
over a unital C*-algebra. Let A and B be unital C*-algebras. As an appli-
cation, we show that every almost homomorphism A : A — B of A into B is
a homomorphism when h((k — 1)"uy) = h((k — 1)™u)h(y) for all unitaries
ueAallye A, and n=0,1,2,---.

Moreover, we prove the Cauchy-Rassias stability of homomorphisms in
C*-algebras.

1. Introduction

In 1940, S. M. Ulam [20] raised the following question: Under what con-
ditions does there exist an additive mapping near an approximately additive
mapping?

Let X and Y be Banach spaces with norms || - || and || - ||, respectively.
Hyers [3] showed that if e > 0 and f : X — Y such that

1f(x+y) = flz) = fyll <e

for all z,y € X, then there exists a unique additive mapping T : X — Y
such that

[f(x) = T(z)[ <e
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for all z € X.

Consider f : X — Y to be a mapping such that f(¢z) is continuous in
t € R for each fixed x € X. Assume that there exist constants ¢ > 0 and
p € [0,1) such that

(*) 1z +y) = f@) = F)l < e(l][” + [[y][")

for all z,y € X. Th.M. Rassias [15] showed that there exists a unique
R-linear mapping 7' : X — Y such that

2¢

1) - T@ < 5=

1E1

for all z € X. The inequality (*) that was introduced for the first time
by Th.M. Rassias [12] is called Cauchy-Rassias inequality and the stabil-
ity of the functional equation Cauchy-Rassias stability. This inequality has
provided a lot of influence in the development of what is known as Hyers-
Ulam-Rassias stability of functional equations. Beginning around the year
1980 the topic of approximate homomorphisms, or the stability of the equa-
tion of homomorphism, was taken up by a number of mathematicians (cf.
[4], [6], [9], [14]-[19]). Th.M. Rassias [13] during the 27'" International Sym-
posium on Functional Equations asked the question whether such a theorem
can also be proved for p > 1. Z. Gajda [1] following the same approach as in
Th.M. Rassias [15], gave an affirmative solution to this question for p > 1.

Gavruta [2] generalized the Rassias’ result: Let G be an abelian group

and Y a Banach space. Denote by ¢ : G x G — [0,00) a function such that
Blz,y) =) 27722, 2y) < o0
j=0

for all z,y € G. Suppose that f: G — Y is a mapping satisfying

1f(x+y) = f(2) = fF)l < o(z,y)

for all x,y € G. Then there exists a unique additive mapping 7' : G — Y
such that

Pz, )

DO | =

1f () = T(z)] <
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for all z € G. C. Park [7] applied the Gavruta’s result to linear functional
equations in Banach modules over a C*-algebra.
Jun and Lee [5] proved the following: Denote by ¢ : X \ {0} x X \ {0} —

[0,00) a function such that
> . . .
Glz,y) =) 3773 2,3y) < 0o
j=0

for all z,y € X \ {0}. Suppose that f: X — Y is a mapping satisfying

r+y
2

12/ ( )= f(@) = fW)l < w(z,9)

for all z,y € X\ {0}. Then there exists a unique additive mapping 7" : X —
Y such that

(P2, —2) + p(—w,32))

W

1f(z) = f(0) = T(2)| <

for all z € X \ {0}. C. Park and W. Park [11] applied the Jun and Lee’s
result to the Jensen’s equation in Banach modules over a C*-algebra.
Throughout this paper, assume that d, k are positive integers with k& > 2.

In this paper, we solve the following functional equation

dk dk
(1) ik FEEL) S f(a),
j=1
which is called a generalized Jensen functional equation. Each solution of
the functional equation (1.i) is called a generalized Jensen mapping. We
moreover prove the Cauchy-Rassias stability of the functional equation (1.i)
in Banach modules over a unital C*-algebra. The main purpose of this paper
is to investigate homomorphisms between C*-algebras and between Poisson

C*-algebras, and to prove their Cauchy-Rassias stability.

2. A generalized Jensen’s mapping

Throughout this section, assume that X and Y are linear spaces.
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LEMMA 2.1. An odd mapping f : X — Y satisfies (1.i) for all 1, zo,- - - ,
xqr, € X if and only if f is Cauchy additive.

Proof. Assume that f: X — Y satisfies (1.i) for all 1,29, -+ ,zq € X.
Putting o = -+ = x4, = 0 in (1.i), we get
x
(21) dk () = f(a1)
for all 1 € X. Putting x3 = -+ = x4 = 0 in (1.i), it follows from (2.1)
that

Flan+w2) = dk f(PR) = faa) + £ a)

for all 1,29 € X. Thus f is Cauchy additive.

The converse is obviously true. O

3. Cauchy-Rassias stability of the generalized Jensen’s mapping
in Banach modules over a C*-algebra

Throughout this section, assume that A is a unital C*-algebra with norm
| - | and unitary group U(A), and that X and Y are left Banach modules
over A with norms || - || and || - ||, respectively.

Given a mapping f: X — Y, we set

dk dk
Duf(ar, - aa) = dk f(zjd}fux]) = uf(ay)

j=1
for all u € U(A) and all z1,--- ,xqx € X.

THEOREM 3.1. Let f: X — Y be an odd mapping for which there is a
function ¢ : X% — [0, 00) such that

(3.1)

(3.ii)
[Duf(z1, s zar)ll < (@1, 2a)
for all w € U(A) and all x1,--- ,xqs € X. Then there exists a unique

A-linear generalized Jensen’s mapping L : X — Y such that

(3i)  [f(z) - L)l < 7

(kl_l)&((k— D, (k= Do, —a, -, —2)

d times d(k—1) times
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for allx € X.

Proof. Note that f(0) =0 and f(—z) = —f(x) for all x € X since f is

an odd mapping. Let u =1 € U(A). Putting z; =--- =24 = (k— 1)z and
Tgp1 =+ = Tgr = —x in (3.ii), we have
(3.1) | —d f((k—1)z) —d(k —1)f(—z)]
Sgp((k_ I)IE, ,(k—l)l',—.%',“- ,—.I)
d times d(k—1) times

for all z € X. So

£~ £ (G = D)
< d(kl_l)go((kl):v,-~- J(k—1Dz,—x,---,—x)
d times d(k—1) times
for all x € X. Hence
(3.2)
1 1 .
||Wf((k —1)"z) - mf((k — 1))
= G (= 1) = (= )= 1)
= d(k—ll)”“‘p((k — D" (B )"
d times
—(k—=1)"z,--,—(k—1)"x)

d(k—1) times

for all z € X and all positive integers n. By (3.2), we have

1 . 1 . = 1
(3.3) xo((k—1)"te - (k= 1), (k= Dz, -+, —(k = 1)'z)
d times d(kf;)rtimes

for all z € X and all positive integers m and n with m < n. This shows

that the sequence {ﬁf((k —1)"z)} is a Cauchy sequence for all z € X.
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Since Y is complete, the sequence {ﬁ f((k —1)"z)} converges for all
x € X. So we can define a mapping L : X — Y by

. 1 n
for all x € X. Since f(—x) = —f(x) for all z € X, we have L(—z) = L(z)
for all z € X. Also, we get

|D1L(z1,- - za)l|

= m (k_ll)nHle((k ="y, (k= 1)"za)||

< nh_{folomw((k— D"y, (k= 1)"2ar) =0

for all x1,--- ,zqx € X. By Lemma 2.1, L is Cauchy additive. Putting
m = 0 and letting n — oo in (3.2), we get (3.iii).
Now, let L' : X — Y be another generalized Jensen’s mapping satisfying

(3.ili). Then we have

IL(z) — L'(2)]| :(k_ll)nHL((k: —1)"z) = L'((k — 1)"z)]|
1 n n
< W(HL((’C —)%) — f((k—1)"z)]
+ 1L ((k = 1)"2) — f((k = 1)"2)]])
< d(k_21)n+155(("’ ) (B — 1),
d times
—(k-=1D)"z,-- ,—(k—1)"z),

d(k—1) times
which tends to zero as n — oo for all z € X. So we can conclude that
L(z) = L'(z) for all € X. This proves the uniqueness of L.

By the assumption, for each u € U(A), we get

o .
[DuL(x, 0,---,0)[ = lim ———==|[Duf((k —1)"2, 0,---,0 )]
—— n—00 (k — 1) ——
dk—1 times dk—1 times
1
< lim ——o((k— 1"z, 0,.---.0)=0
< Gy 0 0)

dk—1 times
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for all z € X. So
ux
dkL(%) = uL(x)
for all u € U(A) and all z € X. Since L is Cauchy additive,

ux

L(uz) = dkL(dk

) = uL(z)

for all u € U(A) and all z € X.
By the same reasoning as in the proofs of [8] and [10], one can show that

the unique generalized Jensen’s mapping L : A — B is an A-linear mapping.
O

COROLLARY 3.2. Let 0 and p < 1 be positive real numbers. Let f : X —
Y be an odd mapping such that

dk
1Duf (@, zan)| <0 [[ay]”

j=1
for all u € U(A) and all xq, -+ ,xq, € X. Then there exists a unique
A-linear generalized Jensen’s mapping L : X — Y such that

(k=1 +(k—-1)

p
~0l[a]P

for allx € X.

Proof. Define p(x1,- - ,xqx) = 92;&1 ||z;||P, and apply Theorem 3.1.
0

THEOREM 3.3. Let f: X — Y be an odd mapping for which there is a
function ¢ : X% — [0, 00) such that

(3.iv)
~ > . X1 Tdk
— V(P _Edk
30(1"17 axdk) ]Zl(k ) ¢((k—1)77 ’(k_l)J)<oo’
(3.v) [Duf (@1, zar) | < o(@1,- -+ @ar)
for all w € U(A) and all x1, -+ ,xqx € X. Then there exists a unique

A-linear generalized Jensen’s mapping L : X — Y such that

Bvi)  [[f(z) = L(2)| <

d(k—l)gz((k_l)x"” J(k— 1)z, —x, -+, —2)

d times d(k—1) times
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forallz € X.
Proof. Replacing = by %5 in (3.1), we have

T 1 x T

I1f () = (k= 1) f(

x7..-7x7—m7-..7—k_1)

d times

d(k—1) times
for all z € X. So

xr T

10k = 1" F(G=g5) = (= 0™ =)
(3.4) = (k= 1" (G =g) — = DI G gy
(k—1)" x x
s—7 G- oo
d times
G ’_m)

d(k—1) times

for all x € X and all positive integers n. By (3.4), we have

n—1
(k — 1) x x
Sg; PR s AN v
d times
(3.5) _W"”’_W)

d(k—1) times

for all x € X and all positive integers m and n with m < n. This shows that
the sequence {(k — 1)”f(ﬁ)} is a Cauchy sequence for all x € X. Since
Y is complete, the sequence {(k — 1)"f(ﬁ)} converges for all z € X.
So we can define a mapping L : X — Y by

L(w) = Jim (k=" f(—52)
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for all z € X. Also, we get

— 3 _ n xl “ e xdk
HDlL($1a 7xdk)H —HILH;O(]{? 1) ||D1f((k_1)n’ ) (k_l)n)H
. €1 Ldk
< Jlim (k—1) 9"((k ) (k- 1)n) 0

for all x1,--- ,xqx € X. By Lemma 2.1, L is Cauchy additive. Putting
m = 0 and letting n — oo in (3.5), we get (3.vi).

The rest of the proof is similar to the proof of Theorem 3.1. O

COROLLARY 3.4. Let 0 and p > 1 be positive real numbers. Let f : X —
Y be an odd mapping such that

dk
IDuf (1, mar) | <6 [P
j=1

for all w € U(A) and all x1,--- x4, € X. Then there exists a unique
A-linear generalized Jensen’s mapping L : X — Y such that

(k — 1P + (k
(k—1)p — (k

—1) )
|f(z) = L(z)|| < _1)9H:ﬂll

forallz € X.

Proof. Define p(z1,- - ,xqx) = 92?21 ||z;||P, and apply Theorem 3.3.
g

4. Isomorphisms in unital C*-algebras

Throughout this section, assume that A is a unital C*-algebra with norm
|||, unit e and unitary group U(A), and that B is a unital C*-algebra with
norm || - ||.

We investigate C*-algebra isomorphisms in unital C*-algebras.

THEOREM 4.1. Let h : A — B be an odd bijective mapping satisfying
h((k — 1)"uy) = h((k — 1)™u)h(y) for all u € U(A), ally € A, and n =
0,1,2,---, for which there is a function ¢ : A% — [0,00) satisfying (3.i)
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such that
(4.) .
2 dk
|k h(zf;l}fﬂ = Dbyl < el xar),
(4.i1)
(0 = 1)) = Ak = 1))l < @((k = 1)"u, -, (b —1)"u)

dk times
for all u € U(A), all z1,--+ ,xqr € A, all p € T' :={X € C| |\ =1} and
n=20,1,2,---. Assume that
1)
(4.ii) Tim_ W
Then the odd bijective mapping h : A — B is a C*-algebra isomorphism.

is invertible.

Proof. We can consider a C*-algebra as a Banach module over a unital
C*-algebra C. So by Theorem 3.1, there exists a unique C-linear mapping

H : A — B such that
1

4] - H < 3((k—-1x.--- D g —
(4iv)  |[A(x) = H(z)|| < a0 = 1)90((k )z, (k- Dz, -2, —2)
d times d(k—1) times
for all z € A. The mapping H : A — B is given by
. 1 n

for all x € A.
By (3.i) and (4.ii), we get

H(u*) = nh_)rlgo (k‘ — 1)n = nh—{l;o (k’ — 1)n

for all u € U(A). Since H is C-linear and each x € A is a finite linear combi-
nation of unitary elements (cf. [7, Theorem 4.1.7]), i.e., xz = Z;ﬂ:l Ajuj (A €

C, Uu; € U(A)),

H(z) = H(Y Xuj) = > NH(w)) = > X H(u)'

I



Linear mappings in Banach modulesfa 297

for all x € A.
Since h((k — 1)™uy) = h((k — 1)™u)h(y) for all u € U(A), all y € A, and
alln=0,1,2,---,

Huy) = lim ———h((k — 1)"uy)

(4.2 = Jim b = 1" wh(y) = H(wh(y)

for all u € U(A) and all y € A. By the additivity of H and (4.2),
(k = 1)"H(uy) = H((k = 1)"uy) = H(u((k —1)"y)) = H(u)h((k —1)"y)
for all u € U(A) and all y € A. Hence

L H@h((E — 1)) = H(u)

(4.3) H(uy) = h((k —1)"y)

(k=1)" (k—1)"
for all u € U(A) and all y € A. Taking the limit in (4.3) as n — oo, we
obtain
(4.4) H(uy) = H(u)H(y)

for all u € U(A) and all y € A. Since H is C-linear and each z € A is
a finite linear combination of unitary elements, i.e., z = Z;nzl Aju; (Aj €
C,u; € U(A)), it follows from (4.4) that

H(xy) = H(Z Ajujy) = Z)\jH(ij) = ZAJ‘H(%)H(?J)

— H(Z Ajuj)H (y) = H(z)H (y)

for all z,y € A.
By (4.2) and (4.4),

H(e)H(y) = H(ey) = H(e)h(y)

for all y € A. Since lim,,_, % = H(e) is invertible,
H(y) = h(y)
for all y € A.

Therefore, the odd bijective mapping h : A — B is a C*-algebra isomor-
phism. O
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COROLLARY 4.2. Let h: A — B be an odd bijective mapping satisfying
h((k — 1)™uy) = h((k — 1)"u)h(y) for all u € U(A), all y € A, and all
n=0,1,2,---, for which there exist constants § > 0 and p € [0, 1) such that

de dk dk

T
S ) S ih(e) < 0 e 1P
j=1

j=1 =

| dkh(
1Ak = 1)"a*) = h((k = 1)"u)*|| < dk(k — 1)

for all p € T, all u € U(A), n = 0,1,2,---, and all x1, -+ ,xq, € A.

Assume that " .
L (k= 1))
n—o00 (k — 1)”

Then the odd bijective mapping h : A — B is a C*-algebra isomorphism.

Is invertible.

Proof. Define @(x1,- -+ ,xqr) = GZ?ZI ||z;||P, and apply Theorem 4.1.
O

THEOREM 4.3. Let h : A — B be an odd bijective mapping satisfying
h((k — 1D)"uy) = h((k — 1)"u)h(y) for all u € U(A), ally € A, and n =

0,1,2,---, for which there is a function ¢ : A% — [0,00) satisfying (3.i),
(4.i1), and (4.iii) such that
Zdil KT o
(@) IR S ) < ol ),
j=1
for all x1,- -+ ,xqr € A and p = 1,4. If h(tzx) is continuous in t € R for each

fixed x € A, then the odd bijective mapping h : A — B is a C*-algebra

isomorphism.

Proof. Put © = 1 in (4.v). By the same reasoning as in the proof of
Theorem 4.1, there exists a unique generalized Jensen’s mapping H : A — B
satisfying (4.iv). By the same reasoning as in the proof of [15, Theorem)],
the additive mapping H : A — B is R-linear.

Put g =i in (4.v). By the same method as in the proof of Theorem 4.1,
one can obtain that

H(iz) = nh_}lrgo W = nh_)rrgo W =iH(x)
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for all x € A.
For each element A € C, A\ = s 4 it, where s,t € R. So

H(\x) = H(sx +itx) = sH(x) + tH(iz)
=sH(z)+itH(z) = (s +it)H(xz) = AH (z)

forall A e Cand all z € A. So

H(Cz +ny) = H(Cx) + H(ny) = CH(z) +nH(y)

for all {,n € C, and all x,y € A. Hence the additive mapping H : A — B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 4.1. O

Now we prove the Cauchy-Rassias stability of C'*-algebra homomorphisms

in unital C*-algebras.

THEOREM 4.4. Let h : A — B be an odd mapping for which there exists
a function ¢ : A% — [0, 00) satisfying (3.i), (4.i) and (4.ii) such that

[A((k = 1)"u(k —1)"v) = h((k — 1)"u)h((k —1)"v)]|

(4.vi) < @((k —1)"u, (k= 1), 0,--,0)
——
dk—2 times

for allu,v € U(A) andn = 0,1,2,---. Then there exists a unique C*-algebra

homomorphism H : A — B satisfying (4.iv).

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists
a unique C-linear involutive mapping H : A — B satisfying (4.iv).
By (4.vi),

Gy Ik = 1)l = 1)) = Bk = 1) (k= 1))

1
< (k= 1)"u, (k= 1), 0,---
< ol = D (k= 1) 0, 0)
dk—2 times
1 n n
S(k_l)ngo((k_l) U,(k—l) 0707"'70)7
———

dk—2 times
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which tends to zero by (3.i) as n — oco. By (4.1),

h((k — 1) u(k — 1)™0)

H(uv) = nli_)n;o =1y
— lim h((k — 1)™u)h((k — 1)™v)
n—00 (k — 1)2n
— lim h((k —1)"u) h((k —1)"v) — H(u)H(v)

n—oo (k—1)" (k—1)m

for all u,v € U(A). Since H is C-linear and each x € A is a finite linear

combination of unitary elements, i.e., z = >0, Aju; (A; € C,u; € U(A)),

H(xv) = H(Z Aju;v) = Z)\jH(ujv) = Z NjH (u;)H (v)
j=1 j=1 j=1
= H(Y Ay H() = H()H()

for all x € A and all v € U(A). By the same method as given above, one

can obtain that

H(zy) = H(x)H(y)

for all z,y € A. So the mapping H : A — B is a C*-algebra homomorphism.
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2]

O
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