THE STABILITY OF LINEAR MAPPINGS IN BANACH MODULES ASSOCIATED WITH A GENERALIZED JENSEN MAPPING

SUNG JIN LEE*

ABSTRACT. Let X and Y be vector spaces. It is shown that a mapping $f: X \to Y$ satisfies the functional equation

(‡)
$$dk \ f(\frac{\sum_{j=1}^{dk} x_j}{dk}) = \sum_{j=1}^{dk} f(x_j)$$

if and only if the mapping $f: X \to Y$ is Cauchy additive, and prove the Cauchy-Rassias stability of the functional equation (\ddagger) in Banach modules over a unital C^* -algebra. Let $\mathcal A$ and $\mathcal B$ be unital C^* -algebras. As an application, we show that every almost homomorphism $h: \mathcal A \to \mathcal B$ of $\mathcal A$ into $\mathcal B$ is a homomorphism when $h((k-1)^n uy) = h((k-1)^n u)h(y)$ for all unitaries $u \in \mathcal A$, all $y \in \mathcal A$, and $n = 0, 1, 2, \cdots$.

Moreover, we prove the Cauchy-Rassias stability of homomorphisms in C^* -algebras.

1. Introduction

In 1940, S. M. Ulam [20] raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping?

Let X and Y be Banach spaces with norms $||\cdot||$ and $||\cdot||$, respectively. Hyers [3] showed that if $\epsilon > 0$ and $f: X \to Y$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon$$

for all $x, y \in X$, then there exists a unique additive mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \epsilon$$

Received March 8, 2011; Accepted May 16, 2011.

²⁰¹⁰ Mathematics Subject Classifications: Primary 39B52, 46L05, 47B48, 17A36.

Key words and phrases: Cauchy-Rassias stability, C^* -algebra homomorphism, Banach module over C^* -algebra.

for all $x \in X$.

Consider $f: X \to Y$ to be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\epsilon \geq 0$ and $p \in [0,1)$ such that

(*)
$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in X$. Th.M. Rassias [15] showed that there exists a unique \mathbb{R} -linear mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$

for all $x \in X$. The inequality (*) that was introduced for the first time by Th.M. Rassias [12] is called Cauchy-Rassias inequality and the stability of the functional equation Cauchy-Rassias stability. This inequality has provided a lot of influence in the development of what is known as Hyers-Ulam-Rassias stability of functional equations. Beginning around the year 1980 the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was taken up by a number of mathematicians (cf. [4], [6], [9], [14]–[19]). Th.M. Rassias [13] during the 27^{th} International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geq 1$. Z. Gajda [1] following the same approach as in Th.M. Rassias [15], gave an affirmative solution to this question for p > 1.

Găvruta [2] generalized the Rassias' result: Let G be an abelian group and Y a Banach space. Denote by $\varphi: G \times G \to [0, \infty)$ a function such that

$$\widetilde{\varphi}(x,y) = \sum_{j=0}^{\infty} 2^{-j} \varphi(2^j x, 2^j y) < \infty$$

for all $x, y \in G$. Suppose that $f: G \to Y$ is a mapping satisfying

$$||f(x+y) - f(x) - f(y)|| < \varphi(x,y)$$

for all $x, y \in G$. Then there exists a unique additive mapping $T: G \to Y$ such that

$$||f(x) - T(x)|| \le \frac{1}{2}\widetilde{\varphi}(x, x)$$

for all $x \in G$. C. Park [7] applied the Găvruta's result to linear functional equations in Banach modules over a C^* -algebra.

Jun and Lee [5] proved the following: Denote by $\varphi: X \setminus \{0\} \times X \setminus \{0\} \rightarrow [0,\infty)$ a function such that

$$\widetilde{\varphi}(x,y) = \sum_{j=0}^{\infty} 3^{-j} \varphi(3^j x, 3^j y) < \infty$$

for all $x, y \in X \setminus \{0\}$. Suppose that $f: X \to Y$ is a mapping satisfying

$$||2f(\frac{x+y}{2}) - f(x) - f(y)|| \le \varphi(x,y)$$

for all $x, y \in X \setminus \{0\}$. Then there exists a unique additive mapping $T: X \to Y$ such that

$$||f(x) - f(0) - T(x)| \le \frac{1}{3} (\widetilde{\varphi}(x, -x) + \widetilde{\varphi}(-x, 3x))$$

for all $x \in X \setminus \{0\}$. C. Park and W. Park [11] applied the Jun and Lee's result to the Jensen's equation in Banach modules over a C^* -algebra.

Throughout this paper, assume that d, k are positive integers with $k \geq 2$. In this paper, we solve the following functional equation

(1.i)
$$dk \ f(\frac{\sum_{j=1}^{dk} x_j}{dk}) = \sum_{j=1}^{dk} f(x_j),$$

which is called a generalized Jensen functional equation. Each solution of the functional equation (1.i) is called a generalized Jensen mapping. We moreover prove the Cauchy-Rassias stability of the functional equation (1.i) in Banach modules over a unital C^* -algebra. The main purpose of this paper is to investigate homomorphisms between C^* -algebras and between Poisson C^* -algebras, and to prove their Cauchy-Rassias stability.

2. A generalized Jensen's mapping

Throughout this section, assume that X and Y are linear spaces.

LEMMA 2.1. An odd mapping $f: X \to Y$ satisfies (1.i) for all $x_1, x_2, \dots, x_{dk} \in X$ if and only if f is Cauchy additive.

Proof. Assume that $f: X \to Y$ satisfies (1.i) for all $x_1, x_2, \dots, x_{dk} \in X$. Putting $x_2 = \dots = x_{dk} = 0$ in (1.i), we get

$$(2.1) dk f(\frac{x_1}{dk}) = f(x_1)$$

for all $x_1 \in X$. Putting $x_3 = \cdots = x_{dk} = 0$ in (1.i), it follows from (2.1) that

$$f(x_1 + x_2) = dk \ f(\frac{x_1 + x_2}{dk}) = f(x_1) + f(x_2)$$

for all $x_1, x_2 \in X$. Thus f is Cauchy additive.

The converse is obviously true.

3. Cauchy-Rassias stability of the generalized Jensen's mapping in Banach modules over a C^* -algebra

Throughout this section, assume that \mathcal{A} is a unital C^* -algebra with norm $|\cdot|$ and unitary group $\mathcal{U}(\mathcal{A})$, and that X and Y are left Banach modules over \mathcal{A} with norms $||\cdot||$ and $||\cdot||$, respectively.

Given a mapping $f: X \to Y$, we set

$$D_u f(x_1, \dots, x_{dk}) := dk \ f(\frac{\sum_{j=1}^{dk} u x_j}{dk}) - \sum_{j=1}^{dk} u f(x_j)$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_{dk} \in X$.

THEOREM 3.1. Let $f: X \to Y$ be an odd mapping for which there is a function $\varphi: X^{dk} \to [0, \infty)$ such that

(3.i)

$$\widetilde{\varphi}(x_1, \dots, x_{dk}) := \sum_{i=0}^{\infty} \frac{1}{(k-1)^j} \varphi((k-1)^j x_1, \dots, (k-1)^j x_{dk}) < \infty,$$

(3.ii)
$$||D_u f(x_1, \dots, x_{dk})|| \le \varphi(x_1, \dots, x_{dk})$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_{dk} \in X$. Then there exists a unique A-linear generalized Jensen's mapping $L: X \to Y$ such that

(3.iii)
$$||f(x) - L(x)|| \le \frac{1}{d(k-1)} \widetilde{\varphi}(\underbrace{(k-1)x, \cdots, (k-1)x}_{d \text{ times}}, \underbrace{-x, \cdots, -x}_{d(k-1) \text{ times}})$$

for all $x \in X$.

Proof. Note that f(0) = 0 and f(-x) = -f(x) for all $x \in X$ since f is an odd mapping. Let $u = 1 \in \mathcal{U}(A)$. Putting $x_1 = \cdots = x_d = (k-1)x$ and $x_{d+1} = \cdots = x_{dk} = -x$ in (3.ii), we have

(3.1)
$$\|-d f((k-1)x) - d(k-1)f(-x)\|$$

$$\leq \varphi(\underbrace{(k-1)x, \cdots, (k-1)x}_{d \text{ times}}, \underbrace{-x, \cdots, -x}_{d(k-1) \text{ times}})$$

for all $x \in X$. So

$$||f(x) - \frac{1}{k-1}f((k-1)x)|| \le \frac{1}{d(k-1)}\varphi(\underbrace{(k-1)x, \cdots, (k-1)x}_{d \text{ times}}, \underbrace{-x, \cdots, -x}_{d(k-1) \text{ times}})$$

for all $x \in X$. Hence

(3.2)
$$\|\frac{1}{(k-1)^n} f((k-1)^n x) - \frac{1}{(k-1)^{n+1}} f((k-1)^{n+1} x) \|$$

$$= \frac{1}{(k-1)^n} \|f((k-1)^n x) - \frac{1}{k-1} f((k-1)(k-1)^n x) \|$$

$$\leq \frac{1}{d(k-1)^{n+1}} \varphi(\underbrace{(k-1)^{n+1} x, \cdots, (k-1)^{n+1} x}_{d \text{ times}}, \underbrace{-(k-1)^n x, \cdots, -(k-1)^n x}_{d(k-1) \text{ times}})$$

for all $x \in X$ and all positive integers n. By (3.2), we have

$$\|\frac{1}{(k-1)^m}f((k-1)^mx) - \frac{1}{(k-1)^n}f((k-1)^nx)\| \le \sum_{l=m}^{n-1} \frac{1}{d(k-1)^{l+1}}$$

$$(3.3) \qquad \times \varphi(\underbrace{(k-1)^{l+1}x, \cdots, (k-1)^{l+1}x}_{d \text{ times}}, \underbrace{-(k-1)^lx, \cdots, -(k-1)^lx}_{d(k-1) \text{ times}})$$

for all $x \in X$ and all positive integers m and n with m < n. This shows that the sequence $\{\frac{1}{(k-1)^n}f((k-1)^nx)\}$ is a Cauchy sequence for all $x \in X$.

Since Y is complete, the sequence $\{\frac{1}{(k-1)^n}f((k-1)^nx)\}$ converges for all $x \in X$. So we can define a mapping $L: X \to Y$ by

$$L(x) := \lim_{n \to \infty} \frac{1}{(k-1)^n} f((k-1)^n x)$$

for all $x \in X$. Since f(-x) = -f(x) for all $x \in X$, we have L(-x) = L(x) for all $x \in X$. Also, we get

$$||D_1 L(x_1, \dots, x_{dk})||$$

$$= \lim_{n \to \infty} \frac{1}{(k-1)^n} ||D_1 f((k-1)^n x_1, \dots, (k-1)^n x_{dk})||$$

$$\leq \lim_{n \to \infty} \frac{1}{(k-1)^n} \varphi((k-1)^n x_1, \dots, (k-1)^n x_{dk}) = 0$$

for all $x_1, \dots, x_{dk} \in X$. By Lemma 2.1, L is Cauchy additive. Putting m = 0 and letting $n \to \infty$ in (3.2), we get (3.iii).

Now, let $L': X \to Y$ be another generalized Jensen's mapping satisfying (3.iii). Then we have

$$||L(x) - L'(x)|| = \frac{1}{(k-1)^n} ||L((k-1)^n x) - L'((k-1)^n x)||$$

$$\leq \frac{1}{(k-1)^n} (||L((k-1)^n x) - f((k-1)^n x)||$$

$$+ ||L'((k-1)^n x) - f((k-1)^n x)||)$$

$$\leq \frac{2}{d(k-1)^{n+1}} \widetilde{\varphi}(\underbrace{(k-1)^{n+1} x, \cdots, (k-1)^{n+1} x}_{d \text{ times}}, \underbrace{-(k-1)^n x, \cdots, -(k-1)^n x}_{d(k-1) \text{ times}}),$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that L(x) = L'(x) for all $x \in X$. This proves the uniqueness of L.

By the assumption, for each $u \in \mathcal{U}(\mathcal{A})$, we get

$$||D_u L(x, \underbrace{0, \dots, 0}_{dk-1 \text{ times}})|| = \lim_{n \to \infty} \frac{1}{(k-1)^n} ||D_u f((k-1)^n x, \underbrace{0, \dots, 0}_{dk-1 \text{ times}})||$$

$$\leq \lim_{n \to \infty} \frac{1}{(k-1)^n} \varphi((k-1)^n x, \underbrace{0, \dots, 0}_{dk-1 \text{ times}}) = 0$$

for all $x \in X$. So

$$dkL(\frac{ux}{dk}) = uL(x)$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $x \in X$. Since L is Cauchy additive,

$$L(ux) = dkL(\frac{ux}{dk}) = uL(x)$$

for all $u \in \mathcal{U}(A)$ and all $x \in X$.

By the same reasoning as in the proofs of [8] and [10], one can show that the unique generalized Jensen's mapping $L: \mathcal{A} \to \mathcal{B}$ is an \mathcal{A} -linear mapping.

COROLLARY 3.2. Let θ and p < 1 be positive real numbers. Let $f: X \to Y$ be an odd mapping such that

$$||D_u f(x_1, \dots, x_{dk})|| \le \theta \sum_{j=1}^{dk} ||x_j||^p$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_{dk} \in X$. Then there exists a unique A-linear generalized Jensen's mapping $L: X \to Y$ such that

$$||f(x) - L(x)|| \le \frac{(k-1) + (k-1)^p}{(k-1) - (k-1)^p} \theta ||x||^p$$

for all $x \in X$.

Proof. Define $\varphi(x_1, \dots, x_{dk}) = \theta \sum_{j=1}^{dk} ||x_j||^p$, and apply Theorem 3.1.

THEOREM 3.3. Let $f: X \to Y$ be an odd mapping for which there is a function $\varphi: X^{dk} \to [0, \infty)$ such that (3.iv)

$$\widetilde{\varphi}(x_1, \dots, x_{dk}) := \sum_{j=1}^{\infty} (k-1)^j \varphi(\frac{x_1}{(k-1)^j}, \dots, \frac{x_{dk}}{(k-1)^j}) < \infty,$$

$$(3.v) \qquad ||D_u f(x_1, \dots, x_{dk})|| \le \varphi(x_1, \dots, x_{dk})$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_{dk} \in X$. Then there exists a unique A-linear generalized Jensen's mapping $L: X \to Y$ such that

$$(3.vi) ||f(x) - L(x)|| \le \frac{1}{d(k-1)} \widetilde{\varphi}(\underbrace{(k-1)x, \cdots, (k-1)x}_{d \text{ times}}, \underbrace{-x, \cdots, -x}_{d(k-1) \text{ times}})$$

Г

for all $x \in X$.

Proof. Replacing x by $\frac{x}{k-1}$ in (3.1), we have

$$||f(x) - (k-1)f(\frac{x}{k-1})|| \le \frac{1}{d}\varphi(\underbrace{x, \cdots, x}_{d \text{ times}}, \underbrace{-\frac{x}{k-1}, \cdots, -\frac{x}{k-1}}_{d(k-1) \text{ times}})$$

for all $x \in X$. So

$$\|(k-1)^n f(\frac{x}{(k-1)^n}) - (k-1)^{n+1} f(\frac{x}{(k-1)^{n+1}}) \|$$

$$= (k-1)^n \| f(\frac{x}{(k-1)^n}) - (k-1) f(\frac{1}{k-1} \cdot \frac{x}{(k-1)^n}) \|$$

$$\leq \frac{(k-1)^n}{d} \varphi(\underbrace{\frac{x}{(k-1)^n}, \dots, \frac{x}{(k-1)^n}}, \frac{x}{(k-1)^{n+1}}, \dots, -\frac{x}{(k-1)^{n+1}})$$

$$= \underbrace{\frac{x}{(k-1)^{n+1}, \dots, -\frac{x}{(k-1)^{n+1}}}}_{d(k-1) \text{ times}}$$

for all $x \in X$ and all positive integers n. By (3.4), we have

$$\|(k-1)^m f(\frac{x}{(k-1)^m}) - (k-1)^n f(\frac{x}{(k-1)^n}) \|$$

$$\leq \sum_{l=m}^{n-1} \frac{(k-1)^l}{d} \varphi(\underbrace{\frac{x}{(k-1)^l}, \dots, \frac{x}{(k-1)^l}}_{d \text{ times}}, \dots, -\frac{x}{(k-1)^{l+1}})$$

$$(3.5)$$

$$\underbrace{-\frac{x}{(k-1)^{l+1}}, \dots, -\frac{x}{(k-1)^{l+1}}}_{d(k-1) \text{ times}})$$

for all $x \in X$ and all positive integers m and n with m < n. This shows that the sequence $\{(k-1)^n f(\frac{x}{(k-1)^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{(k-1)^n f(\frac{x}{(k-1)^n})\}$ converges for all $x \in X$. So we can define a mapping $L: X \to Y$ by

$$L(x) := \lim_{n \to \infty} (k-1)^n f(\frac{x}{(k-1)^n})$$

for all $x \in X$. Also, we get

$$||D_1L(x_1,\dots,x_{dk})|| = \lim_{n\to\infty} (k-1)^n ||D_1f(\frac{x_1}{(k-1)^n},\dots,\frac{x_{dk}}{(k-1)^n})||$$

$$\leq \lim_{n\to\infty} (k-1)^n \varphi(\frac{x_1}{(k-1)^n},\dots,\frac{x_{dk}}{(k-1)^n}) = 0$$

for all $x_1, \dots, x_{dk} \in X$. By Lemma 2.1, L is Cauchy additive. Putting m = 0 and letting $n \to \infty$ in (3.5), we get (3.vi).

The rest of the proof is similar to the proof of Theorem 3.1.

COROLLARY 3.4. Let θ and p > 1 be positive real numbers. Let $f: X \to Y$ be an odd mapping such that

$$||D_u f(x_1, \dots, x_{dk})|| \le \theta \sum_{j=1}^{dk} ||x_j||^p$$

for all $u \in \mathcal{U}(A)$ and all $x_1, \dots, x_{dk} \in X$. Then there exists a unique A-linear generalized Jensen's mapping $L: X \to Y$ such that

$$||f(x) - L(x)|| \le \frac{(k-1)^p + (k-1)}{(k-1)^p - (k-1)}\theta||x||^p$$

for all $x \in X$.

Proof. Define $\varphi(x_1, \dots, x_{dk}) = \theta \sum_{j=1}^{dk} ||x_j||^p$, and apply Theorem 3.3.

4. Isomorphisms in unital C^* -algebras

Throughout this section, assume that \mathcal{A} is a unital C^* -algebra with norm $||\cdot||$, unit e and unitary group $\mathcal{U}(\mathcal{A})$, and that \mathcal{B} is a unital C^* -algebra with norm $||\cdot||$.

We investigate C^* -algebra isomorphisms in unital C^* -algebras.

THEOREM 4.1. Let $h: \mathcal{A} \to \mathcal{B}$ be an odd bijective mapping satisfying $h((k-1)^n uy) = h((k-1)^n u)h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and $n = 0, 1, 2, \dots$, for which there is a function $\varphi: \mathcal{A}^{dk} \to [0, \infty)$ satisfying (3.i)

such that

(4.i)

$$||dk|h(\frac{\sum_{j=1}^{dk}\mu x_j}{dk}) - \sum_{j=1}^{dk}\mu h(x_j)|| \le \varphi(x_1, \dots, x_{dk}),$$

(4.ii)
$$||h((k-1)^n u^*) - h((k-1)^n u)^*|| \le \varphi(\underbrace{(k-1)^n u, \cdots, (k-1)^n u}_{dk \text{ times}})$$

for all $u \in \mathcal{U}(\mathcal{A})$, all $x_1, \dots, x_{dk} \in \mathcal{A}$, all $\mu \in \mathbb{T}^1 := \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}$ and $n = 0, 1, 2, \dots$. Assume that

(4.iii)
$$\lim_{n \to \infty} \frac{h((k-1)^n e)}{(k-1)^n} \text{ is invertible.}$$

Then the odd bijective mapping $h: \mathcal{A} \to \mathcal{B}$ is a C^* -algebra isomorphism.

Proof. We can consider a C^* -algebra as a Banach module over a unital C^* -algebra \mathbb{C} . So by Theorem 3.1, there exists a unique \mathbb{C} -linear mapping $H: \mathcal{A} \to \mathcal{B}$ such that

$$(4.iv) ||h(x) - H(x)|| \le \frac{1}{d(k-1)} \widetilde{\varphi}(\underbrace{(k-1)x, \cdots, (k-1)x}_{d \text{ times}}, \underbrace{-x, \cdots, -x}_{d(k-1) \text{ times}})$$

for all $x \in \mathcal{A}$. The mapping $H : \mathcal{A} \to \mathcal{B}$ is given by

(4.1)
$$H(x) = \lim_{n \to \infty} \frac{1}{(k-1)^n} h((k-1)^n x)$$

for all $x \in \mathcal{A}$.

By (3.i) and (4.ii), we get

$$H(u^*) = \lim_{n \to \infty} \frac{h((k-1)^n u^*)}{(k-1)^n} = \lim_{n \to \infty} \frac{h((k-1)^n u)^*}{(k-1)^n}$$
$$= (\lim_{n \to \infty} \frac{h((k-1)^n u)}{(k-1)^n})^* = H(u)^*$$

for all $u \in \mathcal{U}(\mathcal{A})$. Since H is \mathbb{C} -linear and each $x \in \mathcal{A}$ is a finite linear combination of unitary elements (cf. [7, Theorem 4.1.7]), i.e., $x = \sum_{j=1}^{m} \lambda_j u_j$ ($\lambda_j \in \mathbb{C}, u_j \in \mathcal{U}(\mathcal{A})$),

$$H(x^*) = H(\sum_{j=1}^{m} \overline{\lambda_j} u_j^*) = \sum_{j=1}^{m} \overline{\lambda_j} H(u_j^*) = \sum_{j=1}^{m} \overline{\lambda_j} H(u_j)^*$$
$$= (\sum_{j=1}^{m} \lambda_j H(u_j))^* = H(\sum_{j=1}^{m} \lambda_j u_j)^* = H(x)^*$$

for all $x \in \mathcal{A}$.

Since $h((k-1)^n uy) = h((k-1)^n u)h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and all $n = 0, 1, 2, \dots$,

(4.2)
$$H(uy) = \lim_{n \to \infty} \frac{1}{(k-1)^n} h((k-1)^n uy)$$
$$= \lim_{n \to \infty} \frac{1}{(k-1)^n} h((k-1)^n u) h(y) = H(u)h(y)$$

for all $u \in \mathcal{U}(A)$ and all $y \in A$. By the additivity of H and (4.2),

$$(k-1)^n H(uy) = H((k-1)^n uy) = H(u((k-1)^n y)) = H(u)h((k-1)^n y)$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Hence

$$(4.3) \quad H(uy) = \frac{1}{(k-1)^n} H(u) h((k-1)^n y) = H(u) \frac{1}{(k-1)^n} h((k-1)^n y)$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Taking the limit in (4.3) as $n \to \infty$, we obtain

$$(4.4) H(uy) = H(u)H(y)$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Since H is \mathbb{C} -linear and each $x \in \mathcal{A}$ is a finite linear combination of unitary elements, i.e., $x = \sum_{j=1}^{m} \lambda_j u_j$ ($\lambda_j \in \mathbb{C}, u_j \in \mathcal{U}(\mathcal{A})$), it follows from (4.4) that

$$H(xy) = H(\sum_{j=1}^{m} \lambda_j u_j y) = \sum_{j=1}^{m} \lambda_j H(u_j y) = \sum_{j=1}^{m} \lambda_j H(u_j) H(y)$$
$$= H(\sum_{j=1}^{m} \lambda_j u_j) H(y) = H(x) H(y)$$

for all $x, y \in \mathcal{A}$.

By (4.2) and (4.4),

$$H(e)H(y) = H(ey) = H(e)h(y)$$

for all $y \in \mathcal{A}$. Since $\lim_{n \to \infty} \frac{h((k-1)^n e)}{(k-1)^n} = H(e)$ is invertible,

$$H(y) = h(y)$$

for all $y \in \mathcal{A}$.

Therefore, the odd bijective mapping $h:\mathcal{A}\to\mathcal{B}$ is a C^* -algebra isomorphism. \square

COROLLARY 4.2. Let $h: \mathcal{A} \to \mathcal{B}$ be an odd bijective mapping satisfying $h((k-1)^n uy) = h((k-1)^n u)h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and all $n = 0, 1, 2, \dots$, for which there exist constants $\theta \geq 0$ and $p \in [0, 1)$ such that

$$||dkh(\frac{\sum_{j=1}^{dk} \mu x_j}{dk}) - \sum_{j=1}^{dk} \mu h(x_j)|| \le \theta \sum_{j=1}^{dk} ||x_j||^p,$$

$$||h((k-1)^n u^*) - h((k-1)^n u)^*|| \le dk(k-1)^{np}\theta$$

for all $\mu \in \mathbb{T}^1$, all $u \in \mathcal{U}(A)$, $n = 0, 1, 2, \dots$, and all $x_1, \dots, x_{dk} \in A$. Assume that

$$\lim_{n\to\infty} \frac{h((k-1)^n e)}{(k-1)^n} \text{ is invertible.}$$

Then the odd bijective mapping $h: \mathcal{A} \to \mathcal{B}$ is a C^* -algebra isomorphism.

Proof. Define
$$\varphi(x_1, \dots, x_{dk}) = \theta \sum_{j=1}^{dk} ||x_j||^p$$
, and apply Theorem 4.1.

THEOREM 4.3. Let $h: \mathcal{A} \to \mathcal{B}$ be an odd bijective mapping satisfying $h((k-1)^n uy) = h((k-1)^n u)h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$, and $n = 0, 1, 2, \cdots$, for which there is a function $\varphi: \mathcal{A}^{dk} \to [0, \infty)$ satisfying (3.i), (4.ii), and (4.iii) such that

(4.v)
$$||dkh(\frac{\sum_{j=1}^{dk} \mu x_j}{dk}) - \sum_{j=1}^{dk} \mu h(x_j)|| \le \varphi(x_1, \dots, x_{dk}),$$

for all $x_1, \dots, x_{dk} \in \mathcal{A}$ and $\mu = 1, i$. If h(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{A}$, then the odd bijective mapping $h : \mathcal{A} \to \mathcal{B}$ is a C^* -algebra isomorphism.

Proof. Put $\mu = 1$ in (4.v). By the same reasoning as in the proof of Theorem 4.1, there exists a unique generalized Jensen's mapping $H : \mathcal{A} \to \mathcal{B}$ satisfying (4.iv). By the same reasoning as in the proof of [15, Theorem], the additive mapping $H : \mathcal{A} \to \mathcal{B}$ is \mathbb{R} -linear.

Put $\mu = i$ in (4.v). By the same method as in the proof of Theorem 4.1, one can obtain that

$$H(ix) = \lim_{n \to \infty} \frac{h((k-1)^n ix)}{(k-1)^n} = \lim_{n \to \infty} \frac{ih((k-1)^n x)}{(k-1)^n} = iH(x)$$

Г

for all $x \in \mathcal{A}$.

For each element $\lambda \in \mathbb{C}$, $\lambda = s + it$, where $s, t \in \mathbb{R}$. So

$$H(\lambda x) = H(sx + itx) = sH(x) + tH(ix)$$
$$= sH(x) + itH(x) = (s + it)H(x) = \lambda H(x)$$

for all $\lambda \in \mathbb{C}$ and all $x \in \mathcal{A}$. So

$$H(\zeta x + \eta y) = H(\zeta x) + H(\eta y) = \zeta H(x) + \eta H(y)$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in \mathcal{A}$. Hence the additive mapping $H : \mathcal{A} \to \mathcal{B}$ is \mathbb{C} -linear.

The rest of the proof is the same as in the proof of Theorem 4.1. \Box

Now we prove the Cauchy-Rassias stability of C^* -algebra homomorphisms in unital C^* -algebras.

THEOREM 4.4. Let $h: \mathcal{A} \to \mathcal{B}$ be an odd mapping for which there exists a function $\varphi: \mathcal{A}^{dk} \to [0, \infty)$ satisfying (3.i), (4.i) and (4.ii) such that

$$||h((k-1)^{n}u(k-1)^{n}v) - h((k-1)^{n}u)h((k-1)^{n}v)||$$

$$\leq \varphi((k-1)^{n}u, (k-1)^{n}v, \underbrace{0, \cdots, 0}_{dk-2 \text{ times}})$$

for all $u, v \in \mathcal{U}(A)$ and $n = 0, 1, 2, \cdots$. Then there exists a unique C^* -algebra homomorphism $H : A \to \mathcal{B}$ satisfying (4.iv).

Proof. By the same reasoning as in the proof of Theorem 4.1, there exists a unique \mathbb{C} -linear involutive mapping $H: \mathcal{A} \to \mathcal{B}$ satisfying (4.iv).

By (4.vi),

$$\frac{1}{(k-1)^{2n}} \|h((k-1)^n u(k-1)^n v) - h((k-1)^n u)h((k-1)^n v)\|
\leq \frac{1}{(k-1)^{2n}} \varphi((k-1)^n u, (k-1)^n v, \underbrace{0, \cdots, 0}_{dk-2 \text{ times}})
\leq \frac{1}{(k-1)^n} \varphi((k-1)^n u, (k-1)^n v, \underbrace{0, \cdots, 0}_{dk-2 \text{ times}}),$$

which tends to zero by (3.i) as $n \to \infty$. By (4.1),

$$H(uv) = \lim_{n \to \infty} \frac{h((k-1)^n u(k-1)^n v)}{(k-1)^{2n}}$$

$$= \lim_{n \to \infty} \frac{h((k-1)^n u)h((k-1)^n v)}{(k-1)^{2n}}$$

$$= \lim_{n \to \infty} \frac{h((k-1)^n u)}{(k-1)^n} \frac{h((k-1)^n v)}{(k-1)^n} = H(u)H(v)$$

for all $u, v \in \mathcal{U}(\mathcal{A})$. Since H is \mathbb{C} -linear and each $x \in \mathcal{A}$ is a finite linear combination of unitary elements, i.e., $x = \sum_{j=1}^{m} \lambda_j u_j \ (\lambda_j \in \mathbb{C}, u_j \in \mathcal{U}(\mathcal{A}))$,

$$H(xv) = H(\sum_{j=1}^{m} \lambda_j u_j v) = \sum_{j=1}^{m} \lambda_j H(u_j v) = \sum_{j=1}^{m} \lambda_j H(u_j) H(v)$$
$$= H(\sum_{j=1}^{m} \lambda_j u_j) H(v) = H(x) H(v)$$

for all $x \in \mathcal{A}$ and all $v \in \mathcal{U}(\mathcal{A})$. By the same method as given above, one can obtain that

$$H(xy) = H(x)H(y)$$

for all $x, y \in \mathcal{A}$. So the mapping $H : \mathcal{A} \to \mathcal{B}$ is a C^* -algebra homomorphism.

References

 Z. Gajda, On stability of additive mappings, Internat. J. Math. and Math. Sci. 14 (1991), 431–434.

- P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [4] D. H. Hyers and Th. M. Rassias, *Approximate homomorphisms*, Aequationes Math. **44** (1992), 125–153.
- [5] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305–315.
- [6] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras Elementary Theory, Academic Press, New York, 1983.
- [7] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711–720.
- [8] C. Park, Modified Trif's functional equations in Banach modules over a C*-algebra and approximate algebra homomorphisms, J. Math. Anal. Appl. 278 (2003), 93–108.

- [9] C. Park, Linear *-derivations on JB*-algebras, Acta Math. Scientia 25 (2005), 449–454.
- [10] C. Park and J. Hou, Homomorphisms between C*-algebras associated with the Trif functional equation and linear derivations on C*-algebras, J. Korean Math. Soc. 41 (2004), 461–477.
- [11] C. Park and W. Park, On the Jensen's equation in Banach modules, Taiwanese J. Math. 6 (2002), 523–531.
- [12] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [13] Th. M. Rassias, Problem 16; 2 Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292–293; 309.
- [14] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23–130.
- [15] Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings,
 J. Math. Anal. Appl. 246 (2000), 352–378.
- [16] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. **251** (2000), 264–284.
- [17] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989–993.
- [18] Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325–338.
- [19] T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604–616.
- [20] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

*

DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY KYUNGGI 487-711, REPUBLIC OF KOREA

 $E ext{-}mail: hyper@daejin.ac.kr}$