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LIE BRACKET JORDAN DERIVATIONS

IN BANACH JORDAN ALGEBRAS

Siriluk Paokanta a and Jung Rye Lee b, ∗

Abstract. In this paper, we introduce Lie bracket Jordan derivations in Banach
Jordan algebras. Using the direct method and the fixed point method, we prove the
Hyers-Ulam stability of Lie bracket Jordan derivations in complex Banach Jordan
algebras.

1. Introduction and Preliminaries

Let A be a complex Banach Jordan algebra with Jordan product ⊙ and Der(A)

be the set of C-linear (bounded) Jordan derivations on A. For δ1, δ2 ∈ Der(A),

δ1 ◦ δ2(a⊙ b) = (δ1 ◦ δ2(a))⊙ b+ δ2(a)⊙ δ1(b) + δ1(a)⊙ δ2(b) + a⊙ (δ1 ◦ δ2(b)),

δ2 ◦ δ1(a⊙ b) = (δ2 ◦ δ1(a))⊙ b+ δ1(a)⊙ δ2(b) + δ2(a)⊙ δ1(b) + a⊙ (δ2 ◦ δ1(b))

for all a, b ∈ A. Let [δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1. Then

[δ1, δ2](a⊙ b) = [δ1, δ2](a)⊙ b+ a⊙ [δ1, δ2](b)

for all a, b ∈ A. Since [δ1, δ2] : A → A is C-linear, [δ1, δ2] ∈ Der(A) for all δ1, δ2 ∈
Der(A). Thus Der(A) is a Lie algebra with Lie bracket [δ1, δ2], since δ1 + δ2 and

αδ1 are C-linear derivations on A for all δ1, δ2 ∈ Der(A) and all α ∈ C. One can

easily show that Der(A) is a Banach space, since A is complete.

In this paper, we introduce and investigate Lie bracket derivations in a complex

Banach Jordan algebra.

Definition 1.1. Let A be a complex Banach Jordan algebra and G,H : A→ A be

C-linear mappings. Let [G,H](a) = G(H(a)) −H(G(a)) for all a ∈ A. A C-linear

Received by the editors September 30, 2019. Accepted January 10, 2021.
2010 Mathematics Subject Classification. Primary 47B47, 17C65, 39B62, 39B52, 47H10.
Key words and phrases. Hyers-Ulam stability, fixed point method, p-functional inequality; Lie

bracket Jordan derivation in Banach Jordan algebra, direct method.
∗Corresponding author.

c⃝ 2021 Korean Soc. Math. Educ.

91



92 Siriluk Paokanta & Jung Rye Lee

mapping [G,H] : A→ A is called a Lie bracket Jordan derivation in A if [G,H] is a

Jordan derivation in A, i.e.,

[G,H](a⊙ b) = [G,H](a)⊙ b+ a⊙ [G,H](b)

for all a, b ∈ A.

Since [δ1, δ2] ∈ Der(A) for δ1, δ2 ∈ Der(A), [δ1, δ2] is a Lie bracket Jordan deriva-

tion.

The stability problem of functional equations originated from a question of Ulam

[22] concerning the stability of group homomorphisms. Hyers [10] gave a first affir-

mative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem

was generalized by Aoki [1] for additive mappings and by Rassias [19] for linear

mappings by considering an unbounded Cauchy difference. A generalization of the

Rassias theorem was obtained by Găvruta [9] by replacing the unbounded Cauchy

difference by a general control function in the spirit of Rassias’ approach. The

stability of quadratic functional equation was proved by Skof [20] for mappings

f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [5]

noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by

an Abelian group. Park [14, 15] defined additive ρ-functional inequalities and proved

the Hyers-Ulam stability of the additive ρ-functional inequalities in Banach spaces

and non-Archimedean Banach spaces. The stability problems of various functional

equations have been extensively investigated by a number of authors (see [8, 21, 23]).

We recall a fundamental result in fixed point theory.

Theorem 1.2 ([2, 6]). Let (X, d) be a complete generalized metric space and let

J : X → X be a strictly contractive mapping with Lipschitz constant α < 1. Then

for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [11] were the first to provide applications of stabil-

ity theory of functional equations for the proof of new fixed point theorems with



LIE BRACKET JORDAN DERIVATIONS 93

applications. By using fixed point methods, the stability problems of several func-

tional equations have been extensively investigated by a number of authors (see

[3, 4, 16, 17, 18]).

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability

of Lie bracket Jordan derivations in a complex Banach Jordan algebra by using the

fixed point method. In Section 3, we prove the Hyers-Ulam stability of Lie bracket

Jordan derivations in a Banach Jordan algebra by using the direct method.

Throughout this paper, let A be a complex Banach Jordan algebra and p be a

nonzero complex number with |p| < 1.

2. Hyers-Ulam Stability of Lie Bracket Derivations in Complex
Banach Jordan Algebras: Fixed Point Method

In this section, we prove the Hyers-Ulam stability of Lie bracket Jordan deriva-

tions in complex Banach Jordan algebras by using the fixed point method.

Lemma 2.1 ([13, Theorem 2.1]). Let X be a complex normed space and Y be a

complex Banach space. Let f : X → Y be a mapping such that

f(λ(a+ b)) = λf(a) + λf(b)

for all λ ∈ T1 := {ξ ∈ C : |ξ| = 1} and all a, b ∈ X. Then f : X → Y is C-linear.

For given mappings ϕ, ψ : A→ A, we define

Eλϕ(x, y) : = ϕ(λ(x+ y))− λϕ(x)− λϕ(y),

Fλψ(x, y) : = 2ψ

(
λ
x+ y

2

)
− λψ(x)− λψ(y)

for all λ ∈ T1 and all x, y ∈ A.

Lemma 2.2. Let g, h : X → Y be mappings satisfying

∥Eλg(a, b)∥+ ∥Eλh(a, b)∥ ≤ ∥pFλg(a, b)∥+ ∥pFλh(a, b)∥(2.1)

for all λ ∈ T1 and all a, b ∈ X. Then g, h : X → Y are C-linear.

Proof. Letting b = a and λ = 1 in (2.1), g(2a) = 2g(a) and h(2a) = 2h(a) for all

a ∈ X. So

∥Eλg(a, b)∥+ ∥Eλh(a, b)∥ ≤ ∥pFλg(a, b)∥+ ∥pFλh(a, b)∥

= ∥pEλg(a, b)∥+ ∥pEλh(a, b)∥
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for all λ ∈ T1 and all a, b ∈ X. Thus

g(λ(a+ b)) = λg(a) + λg(b),

h(λ(a+ b)) = λh(a) + λh(b)

for all λ ∈ T1 and all a, b ∈ X, since |p| < 1. By Lemma 2.1, g, h : X → Y are

C-linear. �

Theorem 2.3. Let φ : A2 → [0,∞) be a function such that there exists an L < 1

with

φ
(x
2
,
y

2

)
≤ L

4
φ (x, y) ≤ L

2
φ (x, y)(2.2)

for all x, y ∈ A. Let g, h : A→ A be mappings satisfying

∥Eλg(x, y)∥+ ∥Eλh(x, y)∥ ≤ ∥pFλg(x, y)∥+ ∥pFλh(x, y)∥+ φ(x, y),(2.3)

∥[g, h](x⊙ y)− [g, h](x)⊙ y − x⊙ [g, h](y)∥ ≤ φ(x, y)(2.4)

for all λ ∈ T1 and all x, y ∈ A. Then there exist unique C-linear mappings G,H :

A→ A such that

∥g(x)−G(x)∥+ ∥h(x)−H(x)∥ ≤ L

2(1− L)
φ (x, x)(2.5)

for all x ∈ A. Furthermore, the C-linear mapping [G,H] : A → A is a Lie bracket

Jordan derivation in A.

Proof. Letting y = x and λ = 1 in (2.3), we get

∥g(2x)− 2g(x)∥+ ∥h(2x)− 2h(x)∥ ≤ φ(x, x)(2.6)

for all x ∈ A.

Consider the set

S := {(ϕ, ψ) : ϕ, ψ : A→ A}

and introduce the generalized metric on S:

d((ϕ1, ψ1), (ϕ2, ψ2)) = inf{µ ∈ R+ : ∥ϕ1(x)− ϕ2(x)∥

+ ∥ψ1(x)− ψ2(x)∥ ≤ µφ (x, x) , ∀x ∈ A},

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see [12]).

Now we consider the linear mapping J : S → S such that

J(ϕ, ψ)(x) :=
(
2ϕ

(x
2

)
, 2ψ

(x
2

))
for all x ∈ A.
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Let (ϕ1, ψ1), (ϕ2, ψ2) ∈ S be given such that d((ϕ1, ψ1), (ϕ2, ψ2)) = ε. Then

∥ϕ1(x)− ϕ2(x)∥+ ∥ψ1(x)− ψ2(x)∥ ≤ εφ (x, x)

for all x ∈ A. Since∥∥∥2ϕ1 (x
2

)
− 2ϕ2

(x
2

)∥∥∥+
∥∥∥2ψ1

(x
2

)
− 2ψ2

(x
2

)∥∥∥
≤ 2εφ

(x
2
,
x

2

)
≤ 2ε

L

2
φ (x, x) = Lεφ (x, x)

for all x ∈ A, d(J(ϕ1, ψ1), J(ϕ2, ψ2)) ≤ Lε. This means that

d(J(ϕ1, ψ1), J(ϕ2, ψ2)) ≤ Ld((ϕ1, ψ1), (ϕ2, ψ2))

for all (ϕ1, ψ1), (ϕ2, ψ2) ∈ S.

It follows from (2.6) that∥∥∥g(x)− 2g
(x
2

)∥∥∥+
∥∥∥h(x)− 2h

(x
2

)∥∥∥ ≤ φ
(x
2
,
x

2

)
≤ L

2
φ (x, x)

for all x ∈ A. So d((g, h), J(g, h)) ≤ L
2 .

By Theorem 1.2, there exist mappings G,H : A→ A satisfying the following:

(1) (G,H) is a fixed point of J , i.e.,

(G (x) ,H (x)) =
(
2G

(x
2

)
, 2H

(x
2

))
(2.7)

for all x ∈ A. The pair (G,H) is a unique fixed point of J . This implies that the pair

(G,H) is a unique pair satisfying (2.7) such that there exists a µ ∈ (0,∞) satisfying

∥g(x)−G(x)∥+ ∥h(x)−H(x)∥ ≤ µφ (x, x)

for all x ∈ A;

(2) d(J l(g, h), (G,H)) → 0 as l → ∞. This implies the equality

lim
l→∞

2lg
( x
2l

)
= G(x), lim

l→∞
2lh

( x
2l

)
= H(x)

for all x ∈ A;

(3) d((g, h), (G,H)) ≤ 1
1−Ld((g, h), J(g, h)), which implies

∥g(x)−G(x)∥+ ∥h(x)−H(x)∥ ≤ L

2(1− L)
φ (x, x)

for all x ∈ A.
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It follows from (2.3) and (2.7) that

∥EλG(x, y)∥+ ∥EλH(x, y)∥ = lim
n→∞

2n
(∥∥∥Eλg

( x
2n
,
y

2n

)∥∥∥+
∥∥∥Eλh

( x
2n
,
y

2n

)∥∥∥)
≤ lim

n→∞
2n

(∥∥∥pFλg
( x
2n
,
y

2n

)∥∥∥+
∥∥∥pFλh

( x
2n
,
y

2n

)∥∥∥)+ lim
n→∞

2nφ
( x
2n
,
y

2n

)
= ∥pFλG(x, y)∥+ ∥pFλH(x, y)∥

for all x, y ∈ A, since limn→∞ 2nφ
(

x
2n ,

y
2n

)
≤ limn→∞

2nLn

2n φ (x, y) = 0. So

∥EλG(x, y)∥+ ∥EλH(x, y)∥ ≤ ∥pFλG(x, y)∥+ ∥pFλH(x, y)∥

for all x, y ∈ A. By Lemma 2.2, the mappings G,H : A→ A are C-linear. So there

exist unique C-linear mappings G,H : A→ A satisfying (2.5).

It follows from (2.4) that

∥[G,H](x⊙ y)− [G,H](x)⊙ y − x⊙ [G,H](y)∥

= lim
n→∞

4n
∥∥∥∥[g, h](x⊙ y

4n

)
− [g, h]

( x
2n

)
⊙ y

2n
− x

2n
⊙ [g, h]

( y

2n

)∥∥∥∥
≤ lim

n→∞
4nφ

( x
2n
,
y

2n

)
≤ lim

n→∞

4nLn

4n
φ (x, y) = 0

for all x, y ∈ A. So

[G,H](x⊙ y) = [G,H](x)⊙ y + x⊙ [G,H](y)

for all x, y ∈ A.

Therefore, the C-linear mapping [G,H] : A→ A is a Lie bracket Jordan derivation

in A. �

Corollary 2.4. Let r > 2 and θ be nonnegative real numbers and g, h : A → A be

mappings satisfying

(2.8) ∥Eλg(x, y)∥+ ∥Eλh(x, y)∥ ≤ ∥pFλg(x, y)∥+ ∥pFλh(x, y)∥+ θ(∥x∥r + ∥y∥r),

∥[g, h](x⊙ y)− [g, h](x)⊙ y − x⊙ [g, h](y)∥ ≤ θ(∥x∥r + ∥y∥r)(2.9)

for all λ ∈ T1 and all x, y ∈ A. Then there exist unique C-linear mappings G,H :

A→ A such that

∥g(x)−G(x)∥+ ∥h(x)−H(x)∥ ≤ 4θ

2r − 4
∥x∥r(2.10)

for all x ∈ A. Furthermore, the C-linear mapping [G,H] : A → A is a Lie bracket

Jordan derivation in A.

Proof. The proof follows from Theorem 2.3 by taking L = 22−r and φ(x, y) =

θ(∥x∥r + ∥y∥r) for all x, y ∈ A. �
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Theorem 2.5. Let φ : A2 → [0,∞) be a function such that there exists an L < 1

with

φ (x, y) ≤ 2Lφ
(x
2
,
y

2

)
(2.11)

for all x, y ∈ A. Let g, h : A→ A be mappings satisfying (2.3) and (2.4). Then there

exist unique C-linear mappings G,H : A→ A such that

∥g(x)−G(x)∥+ ∥h(x)−H(x)∥ ≤ 1

2(1− L)
φ (x, x)

for all x ∈ A. Furthermore, the C-linear mapping [G,H] : A → A is a Lie bracket

Jordan derivation in A.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem

2.3.

Now we consider the linear mapping J : S → S such that

J(ϕ, ψ)(x) :=

(
1

2
ϕ (2x) ,

1

2
ψ (2x)

)
for all x ∈ A.

It follows from (2.6) that∥∥∥∥g(x)− 1

2
g(2x)

∥∥∥∥+

∥∥∥∥h(x)− 1

2
h(2x)

∥∥∥∥ ≤ 1

2
φ(x, x)

for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 2.3. �

Corollary 2.6. Let r < 1 and θ be nonnegative real numbers and g, h : A → A

be mappings satisfying (2.8) and (2.9). Then there exist unique C-linear mappings

G,H : A→ A such that

∥g(x)−G(x)∥+ ∥h(x)−H(x)∥ ≤ 4θ

4− 2r
∥x∥r(2.12)

for all x ∈ A. Furthermore, the C-linear mapping [G,H] : A → A is a Lie bracket

Jordan derivation in A.

Proof. The proof follows from Theorem 2.5 by taking L = 2r−2 and φ(x, y) =

θ(∥x∥r + ∥y∥r) for all x, y ∈ A. �
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3. Hyers-Ulam Stability of Lie Bracket Jordan Derivations in
Banach Jordan Algebras: Direct Method

In this section, we prove the Hyers-Ulam stability of Lie bracket Jordan deriva-

tions in complex Banach Jordan algebras by using the direct method.

Theorem 3.1. Let φ : A2 → [0,∞) be a function such that

Ψ(x, y) :=

∞∑
j=0

1

2j
φ(2jx, 2jy) <∞(3.1)

and g, h : A → A be mappings satisfying (2.3) and (2.4). Then there exist unique

C-linear mappings G,H : A→ A such that

∥g(x)−G(x)∥+ ∥h(x)−H(x)∥ ≤ 1

2
Ψ(x, x)(3.2)

for all x ∈ A. Furthermore, the C-linear mapping [G,H] : A → A is a Lie bracket

Jordan derivation in A.

Proof. Letting y = x and λ = 1 in (2.3), we get

∥g(2x)− 2g(x)∥+ ∥h(2x)− 2h(x)∥ ≤ φ(x, x)(3.3)

for all x ∈ A. Thus∥∥∥∥g(x)− 1

2
g(2x)

∥∥∥∥+

∥∥∥∥h(x)− 1

2
h(2x)

∥∥∥∥ ≤ 1

2
φ(x, x)

for all x ∈ A. So∥∥∥∥ 1

2l
g
(
2lx

)
− 1

2m
g (2mx)

∥∥∥∥+

∥∥∥∥ 1

2l
h
(
2lx

)
− 1

2m
h (2mx)

∥∥∥∥(3.4)

≤
m−1∑
j=l

(∥∥∥∥ 1

2j
g
(
2jx

)
− 1

2j+1
g
(
2j+1x

)∥∥∥∥+

∥∥∥∥ 1

2j
h
(
2jx

)
− 1

2j+1
h
(
2j+1x

)∥∥∥∥)

≤
m−1∑
j=l

1

2
· 1

2j
φ
(
2jx, 2jx

)
for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (3.4)

that the sequences { 1
2k
g(2kx)} and { 1

2k
h(2kx)} are Cauchy sequences for all x ∈ A.

Since A is complete, the sequences { 1
2k
g(2kx)} and { 1

2k
h(2kx)} converge. So one

can define the mappings G,H : A→ A by

G(x) := lim
k→∞

1

2k
g
(
2kx

)
, H(x) := lim

k→∞

1

2k
h
(
2kx

)
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for all x ∈ A. Moreover, letting l = 0 and passing the limit m→ ∞ in (3.4), we get

(3.2).

It follows from (2.3) that

∥EλG(x, y)∥+ ∥EλH(x, y)∥ = lim
n→∞

2n
(∥∥∥Eλg

( x
2n
,
y

2n

)∥∥∥+
∥∥∥Eλh

( x
2n
,
y

2n

)∥∥∥)
≤ lim

n→∞
2n

(∥∥∥pFλg
( x
2n
,
y

2n

)∥∥∥+
∥∥∥pFλh

( x
2n
,
y

2n

)∥∥∥)+ lim
n→∞

2nφ
( x
2n
,
y

2n

)
= ∥pFλG(x, y)∥+ ∥pFλH(x, y)∥

for all x, y ∈ A, since limn→∞ 2nφ
(

x
2n ,

y
2n

)
≤ limn→∞

2nLn

2n φ (x, y) = 0. So

∥EλG(x, y)∥+ ∥EλH(x, y)∥ ≤ ∥pFλG(x, y)∥+ ∥pFλH(x, y)∥

for all x, y ∈ A. By Lemma 2.2, the mappings G,H : A→ A are C-linear.
Now, let T, L : A → A be another C-linear mappings satisfying (3.2). Then we

have

∥G(x)− T (x)∥+ ∥H(x)− L(x)∥

=

∥∥∥∥ 1

2q
G (2qx)− 1

2q
T (2qx)

∥∥∥∥+

∥∥∥∥ 1

2q
H (2qx)− 1

2q
L (2qx)

∥∥∥∥
≤

∥∥∥∥ 1

2q
G (2qx)− 1

2q
g (2qx)

∥∥∥∥+

∥∥∥∥ 1

2q
T (2qx)− 1

2q
g (2qx)

∥∥∥∥
+

∥∥∥∥ 1

2q
H (2qx)− 1

2q
h (2qx)

∥∥∥∥+

∥∥∥∥ 1

2q
L (2qx)− 1

2q
h (2qx)

∥∥∥∥
≤ 1

2q
Ψ(2qx, 2qx),

which tends to zero as q → ∞ for all x ∈ A. So we can conclude that G(x) = T (x)

and H(x) = L(x) for all x ∈ A. This proves the uniqueness of (G,H).

It follows from (2.4) that

∥[G,H](x⊙ y)− [G,H](x)⊙ y − x⊙ [G,H](y)∥

= lim
n→∞

1

4n
∥[g, h](4nx⊙ y)− [g, h](2nx)⊙ 2ny − 2nx⊙ [g, h](2ny)∥

≤ lim
n→∞

1

4n
φ(2nx, 2ny) ≤ lim

n→∞

1

2n
φ(2nx, 2ny) = 0

for all x, y ∈ A. So

[G,H](x⊙ y) = [G,H](x)⊙ y + x⊙ [G,H](y)

for all x, y ∈ A.

Therefore, the C-linear mapping [G,H] : A→ A is a Lie bracket Jordan derivation

in A. �
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Corollary 3.2. Let r < 1 and θ be nonnegative real numbers, and g, h : A → A

be mappings satisfying (2.8) and (2.9). Then there exist unique C-linear mappings

G,H : A→ A satisfying (2.12). Furthermore, the C-linear mapping [G,H] : A→ A

is a Lie bracket Jordan derivation in A.

Similarly, we can obtain the following.

Theorem 3.3. Let φ : A2 → [0,∞) be a function such that
∞∑
j=1

4jφ
( x
2j
,
y

2j

)
<∞(3.5)

for all x, y ∈ A and g, h : A→ A be mappings satisfying (2.3) and (2.4). Then there

exist unique C-linear mappings G,H : A→ A such that

∥g(x)−G(x)∥+ ∥h(x)−H(x)∥ ≤ 1

2
Ψ(x, x)(3.6)

for all x ∈ A, where

Ψ(x, y) :=

∞∑
j=1

2jφ
( x
2j
,
y

2j

)
for all x, y ∈ A. Furthermore, the C-linear mapping [G,H] : A→ A is a Lie bracket

Jordan derivation in A.

Proof. It follows from (3.3) that∥∥∥g(x)− 2g
(x
2

)∥∥∥+
∥∥∥h(x)− 2h

(x
2

)∥∥∥ ≤ φ
(x
2
,
x

2

)
for all x ∈ A.

By the same reasoning as in the proof of Theorem 3.1, there exist unique C-
mappings G,H : A → A satisfying (3.6). The C-linear mappings G,H : A → A are

defined by

G(x) = lim
n→∞

2ng
( x
2n

)
, H(x) = lim

n→∞
2nh

( x
2n

)
for all x ∈ A.

It follows from (2.4) that

∥[G,H](x⊙ y)− [G,H](x)⊙ y − x⊙ [G,H](y)∥

= lim
n→∞

4n
∥∥∥∥[g, h](x⊙ y

4n

)
− [g, h]

( x
2n

)
⊙ y

2n
− x

2n
⊙ [g, h]

( y

2n

)∥∥∥∥
≤ lim

n→∞
4nφ

( x
2n
,
y

2n

)
= 0

for all x, y ∈ A. So

[G,H](x⊙ y) = [G,H](x)⊙ y + x⊙ [G,H](y)
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for all x, y ∈ A.

Therefore, the C-linear mapping [G,H] : A→ A is a Lie bracket Jordan derivation

in A. �

Corollary 3.4. Let r > 2 and θ be nonnegative real numbers and g, h : A → A

be mappings satisfying (2.8) and (2.9). Then there exist unique C-linear mappings

G,H : A→ A satisfying (2.10). Furthermore, the C-linear mapping [G,H] : A→ A

is a Lie bracket Jordan derivation in A.
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