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LIE BRACKET JORDAN DERIVATIONS
IN BANACH JORDAN ALGEBRAS

SIRILUK PAOKANTA ® AND JUNG RYE LEEP*

ABSTRACT. In this paper, we introduce Lie bracket Jordan derivations in Banach
Jordan algebras. Using the direct method and the fixed point method, we prove the
Hyers-Ulam stability of Lie bracket Jordan derivations in complex Banach Jordan
algebras.

1. INTRODUCTION AND PRELIMINARIES

Let A be a complex Banach Jordan algebra with Jordan product ® and Der(A)
be the set of C-linear (bounded) Jordan derivations on A. For §1,d2 € Der(A),
d10d2(a®b) = (01 00d2(a)) ®b+ da(a) ®01(b) + d1(a) ® d2(b) +a ® (61 0 d2(b)),
d2001(a®b) = (620681(a)) @b+ d1(a)® d2(b) + d2(a) ® 01(b) + a ® (d2 0 61(b))
for all a,b € A. Let [d1,02] = d1 0 d3 — d2 0 §;. Then

[01,02](a ® b) = [01, 62](a) © b+ a © [d1, 02](b)

for all a,b € A. Since [01,0d2] : A — A is C-linear, [01,02] € Der(A) for all 01,02 €
Der(A). Thus Der(A) is a Lie algebra with Lie bracket [d1,d2], since d; + d2 and
ady are C-linear derivations on A for all 41,92 € Der(A) and all & € C. One can
easily show that Der(A) is a Banach space, since A is complete.

In this paper, we introduce and investigate Lie bracket derivations in a complex

Banach Jordan algebra.

Definition 1.1. Let A be a complex Banach Jordan algebra and G, H : A — A be
C-linear mappings. Let [G, H|(a) = G(H(a)) — H(G(a)) for all a € A. A C-linear
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mapping [G, H] : A — A is called a Lie bracket Jordan derivation in A if [G, H| is a

Jordan derivation in A, i.e.,
G, H](a®b) =[G, H](a) b+ a® |G, H](b)
for all a,b € A.

Since [01, d2] € Der(A) for 01,02 € Der(A), [01,02] is a Lie bracket Jordan deriva-
tion.

The stability problem of functional equations originated from a question of Ulam
[22] concerning the stability of group homomorphisms. Hyers [10] gave a first affir-
mative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem
was generalized by Aoki [1] for additive mappings and by Rassias [19] for linear
mappings by considering an unbounded Cauchy difference. A generalization of the
Rassias theorem was obtained by Gavruta [9] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach. The
stability of quadratic functional equation was proved by Skof [20] for mappings
f : E1 — FE5, where Fj is a normed space and Es is a Banach space. Cholewa [5]
noticed that the theorem of Skof is still true if the relevant domain FE; is replaced by
an Abelian group. Park [14, 15] defined additive p-functional inequalities and proved
the Hyers-Ulam stability of the additive p-functional inequalities in Banach spaces
and non-Archimedean Banach spaces. The stability problems of various functional
equations have been extensively investigated by a number of authors (see [8, 21, 23]).

We recall a fundamental result in fixed point theory.

Theorem 1.2 ([2, 6]). Let (X,d) be a complete generalized metric space and let
J : X — X be a strictly contractive mapping with Lipschitz constant o < 1. Then

for each given element x € X, either
d(J"z, J" ) = oo

for all nonnegative integers n or there exists a positive integer ng such that
(1) d(J"z, J" ) < oo, Vn > ng;

(2) the sequence {J™x} converges to a fized point y* of J;

(3) y* is the unique fized point of J in the setY = {y € X | d(J™z,y) < co};
(4) d(y,y*) < _ad(y, Jy) forally €Y.

In 1996, Isac and Rassias [11] were the first to provide applications of stabil-

ity theory of functional equations for the proof of new fixed point theorems with
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applications. By using fixed point methods, the stability problems of several func-
tional equations have been extensively investigated by a number of authors (see
3, 4, 16, 17, 18]).

This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability
of Lie bracket Jordan derivations in a complex Banach Jordan algebra by using the
fixed point method. In Section 3, we prove the Hyers-Ulam stability of Lie bracket
Jordan derivations in a Banach Jordan algebra by using the direct method.

Throughout this paper, let A be a complex Banach Jordan algebra and p be a

nonzero complex number with |p| < 1.

2. HYERS-ULAM STABILITY OF LIE BRACKET DERIVATIONS IN COMPLEX
BANACH JORDAN ALGEBRAS: FIXED POINT METHOD

In this section, we prove the Hyers-Ulam stability of Lie bracket Jordan deriva-
tions in complex Banach Jordan algebras by using the fixed point method.

Lemma 2.1 ([13, Theorem 2.1]). Let X be a complex normed space and Y be a
complex Banach space. Let f: X —Y be a mapping such that

f(A(a+b)) =Af(a) + Af(D)
forall €T :={¢cC:|¢|=1} and all a,b € X. Then f: X — Y is C-linear.

For given mappings ¢,v : A — A, we define
Exo(z,y) : = ¢(Mz +y)) — Ad(x) — Ad(y),
Foten) =20 (A5 ) = xwlo) - 2wty

2
for all A € T! and all z,y € A.

Lemma 2.2. Let g,h : X — Y be mappings satisfying
(2.1) 1Exg(a, )| + [[Exh(a, b)|| < [[pFxg(a, b)[| + [lpFah(a, )]
for all X € T' and all a,b € X. Then g,h: X — Y are C-linear.
Proof. Letting b = a and A = 1 in (2.1), g(2a) = 2¢g(a) and h(2a) = 2h(a) for all
aeX. So
1Exg(a, b)[| + [[Exh(a, b)|| < [[pFxg(a, b)[| + [lpFah(a, )]
= [lpExg(a, )|l + [pExh(a, b)||
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for all A € T! and all a,b € X. Thus

9(AMa+0)) = Ag(a) + Ag(b),

h(A(a+ b)) = Ah(a) + Ah(b)
for all A € T! and all a,b € X, since |p| < 1. By Lemma 2.1, g,h : X — Y are
C-linear. g
Theorem 2.3. Let ¢ : A2 — [0,00) be a function such that there exists an L < 1
with

Ty L L

2.2 (77 )< - ) S S )
(2.2) Y5 2)_490(36?;) 5 ¢ (@,y)
forall z,y € A. Let g,h : A — A be mappings satisfying

(2.3) 1 Exg(z, )l + [ Exh(z, y)|| < [lpExg(z, y)ll + [[pPFxh(z, y)l| + (2, y),

(2.4) g hl(z ©y) = [g,h](z) ©y —z © g, ] (W) || < ¢(=,y)

for all X € T and all x,y € A. Then there exist unique C-linear mappings G, H :
A — A such that

(2.5) lg(x) = G(@)]| + [|h(z) — H(z)] < 2(1L_L)90 (z, )

for all x € A. Furthermore, the C-linear mapping |G, H| : A — A is a Lie bracket

Jordan derivation in A.

Proof. Letting y = x and A =1 in (2.3), we get
(2.6) l9(22) = 29(2)[| + [[h(22) = 2h(2)]| < p(x, )

for all z € A.
Consider the set

={(¢,¥): 0,9 : A— A}
and introduce the generalized metric on S:
d((¢1,¢1), (d2,¥2)) = Inf{p € Ry : [|g1(z) — d2(2)]|
+ [[Y1(x) — va(@)|| < pep (z,2), Vo € A},

where, as usual, inf ¢ = 4-00. It is easy to show that (5, d) is complete (see [12]).
Now we consider the linear mapping J : .S — S such that

Jow)@) = (26(3).20 (3))

for all z € A.
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Let (¢1,%1), (92,12) € S be given such that d((¢1,%1), (¢2,12)) = €. Then
[61(x) = da(@)[| + [[¢1 (2) — Ya(2) ]| < e (2, 2)

for all x € A. Since

J21 () =202 ()] + oo (3) —202 (5))]

L
<20 (3,3) <2650 (@,2) = Lep (v, )

for all x € A, d(J(¢1,vY1), J(¢2,12)) < Le. This means that

d(J(#1,91), J(d2,%2)) < Ld((¢1,v1), (P2,v2))

for all (¢1,41), (¢2,¢2) € S.
It follows from (2.6) that

Jote) 20 (3) ]| + o) - 20 (5)| < (5. 5) = 3ot

for all z € A. So d((g,h),J(g,h)) < %
By Theorem 1.2, there exist mappings G, H : A — A satisfying the following:
(1) (G, H) is a fixed point of J, i.e.,
x x
(2.7) (G (z),H (z)) = <2G (5) 2H <§>)

for all z € A. The pair (G, H) is a unique fixed point of J. This implies that the pair
(G, H) is a unique pair satisfying (2.7) such that there exists a p € (0, 00) satisfying

lg(x) = G(@)|| + [|h(z) = H(2)|| < pe (z,7)

for all x € A;
(2) d(J(g,h), (G, H)) = 0 as | — co. This implies the equality

lim 2lg (%) = G(z), lim2'h (%) = H(x)

=00 l—o0

for all x € A;
(3) d((g,h), (G, H)) < 12£d((g,h), J (g, h)), which implies

l9(z) = G(@)l| + [h(z) = H(2)l| < 5 = x, )

7(1_”90(

for all z € A.
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It follows from (2.3) and (2.7) that
|BAG(, )| + | Bt (e, ) = lim 2" (|| Bxg (55 95) | + ]| Bn (55 50) )

x y Ty
< n n - =
< Jim 2 (HpFAg<2n Qn)HJFH FAh( 2n> D + i 2 S0(2%’271)
= [[pFrG(x,y) || + [[pExH (z, )|

for all z,y € A, since lim,,_,, 2" ¢ (2%, 2%) < limy 00 2;#()0 (z,y) =0. So
IEAG (@, )| + [ExH (2, y)[| < [pFAG(z,y)|| + [[pFXH (2, y)]]

for all x,y € A. By Lemma 2.2, the mappings G, H : A — A are C-linear. So there
exist unique C-linear mappings G, H : A — A satisfying (2.5).
It follows from (2.4) that

G, Hl(z0y) - [G,H](z) 0y —z © [G, H|(y)|
00 (Z07) -1 (2) 0 & - 20 ()]

o [Ty .
< < ==
< lim 4 @(2n,2n)_nlggo Py =0
for all z,y € A. So
G,Hl(x ®y)=[G,H](z) oy + 2z [G, H|(y)

= lim 4"
n—oo

for all x,y € A.
Therefore, the C-linear mapping [G, H] : A — A is a Lie bracket Jordan derivation
in A. O

Corollary 2.4. Let r > 2 and 0 be nonnegative real numbers and g,h : A — A be
mappings satisfying

(2.8) [1Exg(z, )l + [[Exk(z, y)|| < llpFag(@,y)ll + [pExh(z,y)[| + 0(lz]" + llylI"),

(2.9)  llg, hl(z ©y) =g, hl(x) ©y —z & [g, R ()] < Oll=]" + l[yll")

for all X € T' and all z,y € A. Then there exist unique C-linear mappings G, H :
A — A such that
46

(2.10) lg(z) = G(@)|| + [lh(2) = H(2)]| < 57—

for all x € A. Furthermore, the C-linear mapping |G, H| : A — A is a Lie bracket

[l]"

Jordan derivation in A.

Proof. The proof follows from Theorem 2.3 by taking L = 227" and ¢(x,y) =
O([|]" + lly[|") for all 2,y € A. O
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Theorem 2.5. Let ¢ : A2 — [0,00) be a function such that there exists an L < 1
with
(2.11) ¢ (z,y) < 2Ly (f y)

2°2
forallx,y € A. Let g,h : A — A be mappings satisfying (2.3) and (2.4). Then there
exist unique C-linear mappings G, H : A — A such that

l9(z) = G(@)[| + [h(z) = H(z)l| < 5 : x, )

31-1) L)w(
for all x € A. Furthermore, the C-linear mapping |G, H| : A — A is a Lie bracket

Jordan derivation in A.

Proof. Let (S,d) be the generalized metric space defined in the proof of Theorem
2.3.
Now we consider the linear mapping J : .S — S such that

T = (50(22) 30 20))

for all z € A.
It follows from (2.6) that

<

o)~ ja20 ol 2)

+ Hh(x) - %h(zv)

for all x € A.
The rest of the proof is similar to the proof of Theorem 2.3. 0

Corollary 2.6. Let r < 1 and 6 be nonnegative real numbers and g,h : A — A
be mappings satisfying (2.8) and (2.9). Then there exist unique C-linear mappings
G,H : A— A such that

46

(2.12) lg(z) = G(@)|| + [h(z) = H(z)| < —;

[l]"

for all x € A. Furthermore, the C-linear mapping |G, H] : A — A is a Lie bracket

Jordan derivation in A.

Proof. The proof follows from Theorem 2.5 by taking L = 2”72 and ¢(x,y) =
O([|]" + lly[|") for all 2,y € A. O
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3. HYERS-ULAM STABILITY OF LIE BRACKET JORDAN DERIVATIONS IN
BANACH JORDAN ALGEBRAS: DIRECT METHOD

In this section, we prove the Hyers-Ulam stability of Lie bracket Jordan deriva-

tions in complex Banach Jordan algebras by using the direct method.

Theorem 3.1. Let p: A? = [0,00) be a function such that

o0

1 S
(3.1) V(x,y) =) 5922, 27y) < oo
=0

and g,h : A — A be mappings satisfying (2.3) and (2.4). Then there exist unique
C-linear mappings G, H : A — A such that

(32) lo(z) — @) + Ih(a) ~ H@)| < 3 ¥(r,2)

for all x € A. Furthermore, the C-linear mapping |G, H] : A — A is a Lie bracket

Jordan derivation in A.

Proof. Letting y =z and A = 1 in (2.3), we get

33) lof22) — 29(x)] + IA(2x) — 20(a)]| < (a2
for all x € A. Thus
1 1 1
o(0) = q020) | + ) - h(20)]| < Gotano)

for all x € A. So

(3.4) %g (gl;,;) - 2img (2mx) ‘ + %h <21x> B %mh (2m2)
m—1 1 ' ) 4 X | |
< gz—:z < 279 (272) — o+ (27%12) || + ‘ Eh (272) — ﬁh (27 12) )
(s I R
= 5 9% (22,272)

for all nonnegative integers m and [ with m > [ and all z € A. It follows from (3.4)
that the sequences {2%9(2’%)} and {%h(?kx)} are Cauchy sequences for all z € A.
Since A is complete, the sequences {2%9(2]%)} and {Z%h(2kx)} converge. So one
can define the mappings G, H : A — A by
1 1
G(z) == lim g (2k1‘) ) H(z):= klglolo ﬁh (2’“95)

k—o0 2
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for all x € A. Moreover, letting [ = 0 and passing the limit m — oo in (3.4), we get
(3.2).
It follows from (2.3) that

IEXG (2, )| + [ ExH (2, y)|| = lim 2" (HEAQ( )H + HEAh(zn 2)”)

n n (T Y
< lim 2 (|pFa (555 )H +lpEsn (5 2n> )+ Jim 270 (05, 2)
_ IRG @l + [pFH )|

for all z,y € A, since lim,,_,~, 2" ¢ (2%, 2%) < limy—e0 2;#@ (z,y) =0. So
IEXG (2, y)l| + | ExH (z,y)|| < lpFAG(z, y)l| + [pPFH (2, y)||
for all z,y € A. By Lemma 2.2, the mappings G, H : A — A are C-linear.
Now, let T, L : A — A be another C-linear mappings satisfying (3.2). Then we

have

G () = T(x H+HH( ) = L)

21qG (29z) — —T (292) H H (29x) — —L (29)
<|Ea@w) - Lo+ | 270 — 2g@0%)
= |94 9¢9 29 9q9

L H (292) — Sh (20 L L (2%2) — 2 (20
+§ ( 50)—@( 95)‘*‘@ ( 1’)—5( )

1
2 w91y 99
< 2q\Il(2 x,2%z),

which tends to zero as ¢ — oo for all z € A. So we can conclude that G(z) = T'(x)
and H(z) = L(z) for all x € A. This proves the uniqueness of (G, H).
It follows from (2.4) that

||[G,H](:E®y) G, H](z) 0y — 2z ©[G, H](y)]
= lim *H[g, h(4"z ©y) —[g, h](2"z) © 2"y — 2"z © [g, h](2"Y)|

n—oo0 4M
1 1
< _ < _ n n —
<l gae(e2) < Jiw e (e 2%) =0

for all z,y € A. So
(G, H](z0y) =[G, H](z) Oy + 2 © [G, H|(y)

for all z,y € A.
Therefore, the C-linear mapping [G, H] : A — A is a Lie bracket Jordan derivation
in A. O



100 SIRILUK PAOKANTA & JUNG RYE LEE

Corollary 3.2. Let r < 1 and 0 be nonnegative real numbers, and g,h : A — A
be mappings satisfying (2.8) and (2.9). Then there exist unique C-linear mappings
G,H : A — A satisfying (2.12). Furthermore, the C-linear mapping |G, H]: A — A

1s a Lie bracket Jordan derivation in A.
Similarly, we can obtain the following.

Theorem 3.3. Let ¢ : A2 — [0,00) be a function such that
i (© 1)
(3.5) 2490(23'72]' < 0
J:
forallz,y € A and g,h : A — A be mappings satisfying (2.3) and (2.4). Then there
exist unique C-linear mappings G, H : A — A such that

(3.6) lg(z) = G(@)|| + [|h(z) — H(z)|| < %‘P(l’aw)
for all x € A, where
w205 3)

7j=1
for all z,y € A. Furthermore, the C-linear mapping [G,H] : A — A is a Lie bracket

Jordan derivation in A.

Proof. 1t follows from (3.3) that

ot =20 (3)[ + @ =20 (5) [ < (5-3)

for all z € A.

By the same reasoning as in the proof of Theorem 3.1, there exist unique C-
mappings G, H : A — A satisfying (3.6). The C-linear mappings G, H : A — A are
defined by

) x
G(z) = lim 2"g (2—n>, H(x)= lim 2"h (2 )

n—oo n—o0

for all x € A.
It follows from (2.4) that

1[G, Hl(z 0y) — [G,H](z) 0y —z © [G, H|(y)||
1 (£5) o (2) o L5 o ()]
< Jim 4 (55050 ) =0
for all x,y € A. So
(G, H](z ©y) =[G, H](z) 0y + 2 © [G, H|(y)

= lim 4"
n—oo
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for all z,y € A.
Therefore, the C-linear mapping [G, H] : A — A is a Lie bracket Jordan derivation
in A. O

Corollary 3.4. Let v > 2 and 0 be nonnegative real numbers and g,h : A — A
be mappings satisfying (2.8) and (2.9). Then there exist unique C-linear mappings
G,H : A — A satisfying (2.10). Furthermore, the C-linear mapping |G, H]: A — A

1s a Lie bracket Jordan derivation in A.
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