BIPROJECTIVITY OF MATRIX BANACH ALGEBRAS WITH APPLICATION TO COMPACT GROUPS

FEREIDOUN HABIBIAN^{a,*} AND RAZIEH NOORI^b

ABSTRACT. In this paper, the necessary and sufficient conditions are considered for biprojectivity of Banach algebras $\mathfrak{E}_p(I)$. As an application, we investigate biprojectivity of convolution Banach algebras A(G) and $L^2(G)$ on a compact group G.

1. INTRODUCTION

The Banach algebras $\mathfrak{E}_p(I)$, where $p \in [1, \infty] \cup \{0\}$, have been introduced and extensively studied in Section 28 of [4]. Recently, amenability, weak amenability and approximate weak amenability have been studied by H. Samea in [8](see also [5]). The present paper is going to investigate biprojectivity of Banach algebras $\mathfrak{E}_p(I)$, together with their applications to a number of convolution Banach algebras on compact groups.

Let H be an n-dimensional Hilbert space and suppose that B(H) is the space of all linear operators on H. Clearly we can identify B(H) with $\mathbb{M}_n(\mathbb{C})$ (the space of all $n \times n$ -matrices on \mathbb{C}). For $A \in \mathbb{M}_n(\mathbb{C})$, let $A^* \in \mathbb{M}_n(\mathbb{C})$ by $(A^*)_{ij} = \overline{A_{ji}}$ $(1 \leq i, j \leq n)$, and let |A| denote the unique positive-definite square root of AA^* . A is called *unitary*, if $A^*A = AA^* = I$, where I is the $n \times n$ -identity matrix. For $E \in B(H)$, let $(\lambda_1, \ldots, \lambda_n)$ be the sequence of eigenvalues of the operator |E|, written in any order. Define $||E||_{\varphi_{\infty}} = \max_{1 \leq i \leq n} |\lambda_i|$, and $||E||_{\varphi_p} = (\sum_{i=1}^n |\lambda_i|^p)^{\frac{1}{p}}$ $(1 \leq p < \infty)$. For more details see Definition D.37 and Theorem D.40 of [4].

Let I be an arbitrary index set. For each $i \in I$, let H_i be a finite dimensional Hilbert space of dimension d_i , and let $a_i \geq 1$ be a real number. The *-algebra $\prod_{i \in I} B(H_i)$ will be denoted by $\mathfrak{E}(I)$; scaler multiplication, addition, multiplication,

Received by the editors January 28, 2018. Accepted April 19, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 46A32; Secondary 46M10, 22D99.

 $Key\ words\ and\ phrases.$ Banach algebra, biprojective, compact group.

^{*}Corresponding author.

^{© 2018} Korean Soc. Math. Educ.

and the adjoint of an element are defined coordinate-wise. Let $E = (E_i)$ be an element of $\mathfrak{E}(I)$. We define $||E||_p := \left(\sum_{i \in I} a_i ||E_i||_{\varphi_p}\right)^{\frac{1}{p}}$ $(1 \leq p < \infty)$, and $||E||_{\infty} = \sup_{i \in I} ||E_i||_{\varphi_{\infty}}$. For $1 \leq p \leq \infty$, $\mathfrak{E}_p(I)$ is defined as the set of all $E \in \mathfrak{E}(I)$ for which $||E||_p < \infty$.

For a locally compact group G and a function $f : G \to \mathbb{C}$, \check{f} is defined by $\check{f}(x) = f(x^{-1})$ ($x \in G$). Let A(G) (or $\mathfrak{K}(G)$, defined in 35.16 of [4]) consists of all functions h in $C_0(G)$ that can be written in at least one way as $\sum_{n=1}^{\infty} f_n * \check{g}_n$, where $f_n, g_n \in L^2(G)$, and $\sum_{n=1}^{\infty} ||f_n||_2 ||g_n||_2 < \infty$. For $h \in A(G)$, define

$$||h||_{A(G)} = \inf \left\{ \sum_{n=1}^{\infty} ||f_n||_2 ||g_n||_2 : h = \sum_{n=1}^{\infty} f_n * \check{g_n} \right\}.$$

With this norm A(G) is a Banach space. For more details see 35.16 of [4].

As [1], let $(A, \|.\|)$ be a normed algebra, and let $I_1, ..., I_n$ be ideals in A, then $I_1...I_n$ is an ideal in A; we transfer the projective norm from $I_1 \otimes ... \otimes I_n$ into $I_1....I_n$. So that, for $A \in I_1....I_n$, we have

$$||a||_{\pi} = \inf \left\{ \sum_{j=1}^{m} ||a_{1,j}|| \dots ||a_{n,j}|| ; a = \sum_{j=1}^{m} a_{1,j} \dots a_{n,j}, a_{i,j} \in I_i \right\}.$$

Clearly $\|.\|_{\pi}$ is an algebra norm on $I_1....I_n$ with $\|a\| \leq \|a\|_{\pi}$ $(a \in I_1...I_n)$; the norm $\|.\|_{\pi}$ is again called the projective norm. In particular, we may consider $\|.\|_{\pi}$ on A^2 . Let A be a Banach algebra. Then the continuous linear map $\pi_A : A \otimes A \to A$ such that $\pi_A(x \otimes y) = ab$ $(a, b \in A)$ is the projective induced product map and $I_{\pi} = ker\pi_A$. The quotient norm on the image $\pi_A(A \otimes A) \cong \frac{(A \otimes A)}{\ker \pi_A}$ is denoted by $|||.|||_{\pi}$, so that

$$|||a|||_{\pi} = \inf \left\{ \sum_{j=1}^{\infty} ||a_j|| ||b_j|| \; ; \; a = \sum_{j=1}^{\infty} a_j b_j \right\} (a \in \pi_A(A \hat{\otimes} A).$$

Note that by $2 \cdot 1 \cdot 15$ of [1],

(1.1)
$$||a|| \le |||a|||_{\pi} \le ||a||_{\pi} \ (a \in A^2).$$

A normed algebra A has S-property (π -property) if there is a constant C > 0 such that

$$||a||_{\pi} \le c||a|| \ (||a|||_{\pi} \le c||a||) \ (a \in A^2).$$

Clearly, If A has S-property, then A has π -property. A Banach algebra A is biprojective if $\pi_A : A \hat{\otimes} A \longrightarrow A$ has a bounded right inverse as an A-bimodule homomorphism. By proposition 2.8.41 of [1], if A is biprojective then $\pi_A(A \hat{\otimes} A) = A$ and A has π -property.

2. Main Results

In this section, among other results, we obtain the necessary and sufficient conditions such that $\mathfrak{E}_p(I)$ for $p \ge 1$, has π -property and as a result we apply π -property of $\mathfrak{E}_p(I)$ to find the necessary and sufficient conditions for biprojectivity of $\mathfrak{E}_p(I)$.

Theorem 2.1. Suppose that $p \ge 1$ and $A \in \mathfrak{E}_{\frac{p}{2}}(I)$. Then there are $B, C \in \mathfrak{E}_p(I)$ such that A = B.C and $||B||_p = ||C||_p = ||A||_{\frac{p}{2}}^{\frac{1}{2}}$.

Proof. First suppose $p \neq \infty$. By Notation D.26 (i) of [4], for $i \in I, |A_i|$ can be written uniquely in the form $|A_i| = \sum_{j=1}^n b_i^j Q_i^j$, where the b_i^j s are distinct positive numbers and Q_j^i s are projections onto pairwise orthogonal nonzero subspaces of H_i and $|A_i|^{\frac{1}{2}} = \sum_{j=1}^n (b_i^j)^{\frac{1}{2}} Q_i^j$. Therefore, $|A_i| = |A_i|^{\frac{1}{2}} |A_i|^{\frac{1}{2}}$. For $i \in I$, according to the polar decomposition, there is $W_i \in \mathcal{U}(H_i)$ (the set of all unitary operators on H_i) such that

$$A_i = |A_i| \cdot W_i = |A_i|^{\frac{1}{2}} \cdot |A_i|^{\frac{1}{2}} \cdot W_i.$$

Let $B_i = |A_i|^{\frac{1}{2}}$ and $C_i = |A_i|^{\frac{1}{2}} W_i$. By Lemma 1.1 of [?]

$$||B_i||_{\varphi_p}^p = ||A_i|^{\frac{1}{2}}||_{\varphi_p}^p = ||A_i||_{\varphi_p}^{\frac{p}{2}},$$

therefore,

$$||B||_{p} = \left(\sum_{i} a_{i} ||B_{i}||_{\varphi_{p}}^{p}\right)^{\frac{1}{p}} = \left(\sum_{i} a_{i} ||A_{i}||_{\varphi_{\frac{p}{2}}}^{\frac{p}{2}}\right)^{\frac{2}{p} \cdot \frac{1}{2}} = ||A||_{\frac{p}{2}}^{\frac{1}{2}} < \infty.$$

So $B \in \mathfrak{E}_p(I)$. The rest of the proof follows easily from Theorem D. 41 of [4] and Lemma 1.1 of [5]. For $p = \infty$ the proof is similar.

Corollary 2.2. If $p \ge 1$, then $\mathfrak{E}_{\frac{p}{2}}(I) \subseteq \mathfrak{E}_p(I)\mathfrak{E}_p(I)$.

Let A be a Banach algebra. We set $A^{[2]} = A \cdot A = \{ab : a, b \in A\}$ and $A^2 = linA^{[2]} = linA \cdot A = \{\sum_{i=1}^{n} \alpha_i a_i b_i : \alpha_1, ..., \alpha_n \in \mathbb{C}, a_1, ..., a_n, b_1, ..., b_n \in A\}.$

Theorem 2.3. If $p \ge 1$, then $\mathfrak{E}_p^2(I) = \mathfrak{E}_p^{[2]}(I) = \mathfrak{E}_{\frac{p}{2}}(I)$.

Proof. It is enough to show that if $E, F \in \mathfrak{E}_p(I)$, then $EF \in \mathfrak{E}_{\frac{p}{2}}(I)$. By using Theorem 2 · 3 of [5] for p = q, and applying Hölder inequality, we obtain

$$\begin{split} \|EF\|_{\frac{p}{2}}^{\frac{p}{2}} &= \sum_{i} a_{i} \|(EF)_{i}\|_{\varphi_{p}}^{\frac{p}{2}} \\ &\leq \sum_{i} a_{i} \|E_{i}\|_{\varphi_{p}}^{\frac{p}{2}} \|F_{i}\|_{\varphi_{p}}^{\frac{p}{2}} \\ &\leq \sum_{i} a_{i}^{\frac{1}{2}} \|E_{i}\|_{\varphi_{p}}^{\frac{p}{2}} a_{i}^{\frac{1}{2}} \|F_{i}\|_{\varphi_{p}}^{\frac{p}{2}} \\ &\leq \left(\sum_{i} a_{i} \|E_{i}\|_{\varphi_{p}}^{p}\right)^{\frac{1}{2}} \left(\sum_{i} a_{i} \|F_{i}\|^{p}\right)_{\varphi_{p}}\right)^{\frac{1}{2}} \\ &= \left(\|E\|_{p}^{p}\right)^{\frac{1}{2}} \left(\|F\|_{p}^{p}\right)^{\frac{1}{2}} < \infty. \end{split}$$

Theorem 2.4. If $r > p \ge 1$, then $\mathfrak{E}_p(I) \trianglelefteq \mathfrak{E}_r(I)$.

Proof. By Theorem 28.32 of [4], $\mathfrak{E}_p(I) \subseteq \mathfrak{E}_r(I)$. Let $A \in \mathfrak{E}_r(I)$ and $B \in \mathfrak{E}_p(I)$. For each $i \in I$, we denote the sequence of eigenvalues of A_i by $s_j(A_i)$. Now, if $A_i, B_i \in B(H_i)$, then by 2.2 and 2.3 of [3],

$$s_j(A_iB_i) \le ||A_i||_{\varphi_{\infty}} . s_j(B_i),$$

$$s_j(B_iA_i) \le ||A_i||_{\varphi_{\infty}} . s_j(B_i).$$

Thus

$$\|A_i B_i\|_{\varphi_p} = \left(\sum_j s_j (A_i B_i)^p\right)^{\frac{1}{p}} \le \left(\sum_j \|A_i\|_{\infty}^p . s_j (B_i)^p\right)^{\frac{1}{p}} = \|A_i\|_{\varphi_{\infty}} \|B_i\|_{\varphi_p}.$$

But $A \in \mathfrak{E}_r(I)$, hence $A \in \mathfrak{E}_\infty(I)$ and

$$\|AB\|_{p}^{p} = \sum_{i} a_{i} \|A_{i}B_{i}\|_{\varphi_{p}}^{p} \leq \sum_{i} a_{i} \|A_{i}\|_{\varphi_{\infty}}^{p} \|B_{i}\|_{\varphi_{p}}^{p} \leq \|A\|_{\infty}^{p} \|B\|_{\varphi_{p}}^{p} < \infty$$

Therefore, $AB \in \mathfrak{E}_p(I)$ and the proof is complete.

Corollary 2.5. If $p \ge 1$, then $\mathfrak{E}_{\frac{p}{2}}(I) \trianglelefteq \mathfrak{E}_p(I)$.

Let $\|.\|_{\pi,p}$ and $\||.\||_{\pi,p}$ be the projective norms on $\mathfrak{E}_p(I)\mathfrak{E}_p(I)$ and the quotient norm from $\mathfrak{E}_p(I)\hat{\otimes}\mathfrak{E}_p(I)$, respectively. Let

$$\mathcal{U}(\mathfrak{E}(I)) = \{ (E_i)_{i \in I} \in \mathfrak{E}(I) : E_i \in \mathcal{U}(H_i) \},\$$

 $U, V \in \mathcal{U}(\mathfrak{E}(I))$ and $E \in \mathfrak{E}_p(I)$. By Theorem D.41 of [4], we have

$$\|VEU\|_{p} = \left(\sum_{i} a_{i} \|V_{i}E_{i}U_{i}\|_{\varphi_{p}}^{p}\right)^{\frac{1}{p}} = \left(\sum_{i} a_{i} \|E_{i}\|_{\varphi_{p}}^{p}\right)^{\frac{1}{p}} = \|E\|_{p}.$$

By polar decomposition, for $i \in I$, there is a unitary operator U_i such that $U_i E_i = |E_i|$. Let $U = (U_i)_{i \in I}$ then

(2.1)
$$||E||_{\pi,p} = ||UE||_{\pi,p} = ||(|E_i|)_{i \in I}||_{\pi,p}$$

Since the square root of a matrix is hermitian, then is diagonalizable, i.e. there is a unitary operator V_i such that $V_i^{-1}|E_i|V_i = T_i$, where T_i is a diagonal matrix. Let $V = (V_i)_{i \in I}$. Then

$$\|(|E_i|)_{i \in I}\|_{\pi,p} = \|V|E|\|_{\pi,p} = \|(T_i)_{i \in I}\|_{\pi,p}.$$

By (2.1), $||E||_{\pi,p} = ||(T_i)_{i \in I}||_{\pi,p}$. By the similar procedure, we can prove that $|||E|||_{\pi,p} = |||(T_i)_{i \in I}|||_{\pi,p}$. Consequently, for analyzing $||.||_{\pi,p}$ and $|||.|||_{\pi,p}$ it is enough to focus on $E = (E_i)_{i \in I}$ of $\mathfrak{E}_p(I)$, where each E_i is a diagonal matrix with positive diagonal entries.

For the rest of the section we set $\tilde{p} = \max\{1, \frac{p}{2}\}$.

Theorem 2.6. Let $2 \le p < \infty$. Then for each $E \in \mathfrak{E}_p^2(I)$,

$$||E||_{\pi,p} = |||E|||_{\pi,p} = ||E||_{\tilde{p}}$$

Proof. Suppose $2 \leq p < \infty$ and $E \in \mathfrak{E}_p^2(I)$. By Theorem 2.3, $E \in \mathfrak{E}_{\frac{p}{2}}(I)$. Using Theorem 2.1, it follows that $||E||_{\pi,p} \leq ||E||_{\tilde{p}}$. Also, if $E = \sum_{j=1}^{\infty} F^{(j)} K^{(j)}$ in $\mathfrak{E}_p(I)$ with $\sum_{j=1}^{\infty} ||F^{(j)}||_p ||K^{(j)}||_p < \infty$, then by Theorem 28 · 3 of [4], we have

$$||E||_{\tilde{p}} = ||E||_{\frac{p}{2}} \le \sum_{j=1}^{\infty} ||F^{(j)}K^{(j)}||_{\frac{p}{2}} \le \sum_{j=1}^{\infty} ||F^{(j)}||_{p} ||K^{(j)}||_{p} < \infty,$$

which results $||E||_{\tilde{p}} \leq |||E|||_{\pi,p}$. Then the result follows from (1.1).

Theorem 2.7. $\|.\|_p$ and $\|.\|_{\tilde{p}}$ are equivalent if and only if p = 1 or I is finite.

Proof. The sufficient condition is evident. Let

(2.2)
$$K \|.\|_{p} \le \|.\|_{\tilde{p}} \le M \|.\|_{p},$$

for some K, M > 0, and $p \neq 1$. If $1 , then <math>\tilde{p} = 1$ and by (2.2), $\|.\|_1 \leq M\|.\|_p$, that implies $\mathfrak{E}_p(I) \subseteq \mathfrak{E}_1(I)$ which is contradict with Theorem 28.32 of [4]. We can repeat the same argument for the case $p \geq 2$.

For each $i \in I$, and $1 \le m, n \le d_i$, let ε_{mn} be the elementary $d_i \times d_i$ -matrix such that for $1 \le k, l \le d_i$,

$$(\varepsilon_{mn})_{kl} = \begin{cases} 1 & \text{if } k = m, l = n \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 2.8. Let $1 \le p < 2$. If $M = \sup_{i \in I} a_i < \infty$, then for each $E \in \mathfrak{E}_p^2(I)$ $\|E\|_{\tilde{p}} = \|E\|_1 \le |||E|||_{\pi,p} \le \|E\|_{\pi,p} \le M \|E\|_{\tilde{p}} = M \|E\|_1$

Proof. Suppose that $E = \sum_{j=1}^{\infty} F^{(j)} K^{(j)}$ in $\mathfrak{E}_p(I)$, where $\sum_{j=1}^{\infty} \|F^{(j)}\|_p \|K^{(j)}\|_p < \infty$. Then Hölder inequality and Theorem 28 · 3 of [4], imply that

$$||E||_1 \le \sum_{j=1}^{\infty} ||F^{(j)}K^{(j)}||_1 \le \sum_{j=1}^{\infty} ||F^{(j)}||_2 ||K^{(j)}||_2 \le \sum_{j=1}^{\infty} ||F^{(j)}||_p ||K^{(j)}||_p < \infty.$$

Therefore, $||E||_1 = ||E||_{\tilde{p}} \le |||E|||_{\pi,p}$. Let $\delta_i : I \to \mathbb{R}$ be defined by $\delta_i(j) = 1$ if i = jand $\delta_i(j) = 0$ if $i \ne j$. Then $(E_i)_{i \in I} = \sum_{j \in I} E_j \delta_j$ and

(2.3)
$$\|(E_i)_{i \in I}\|_{\pi,p} \le \|\sum_{j \in I} E_j \delta_j\|_{\pi,p} \le \sum_j \|E_j \delta_j\|_{\pi,p}$$

where

$$E_{j} = \begin{bmatrix} \lambda_{1}^{j} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{j} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{d_{j}}^{j} \end{bmatrix}.$$

This gives

$$E_j = \sum_{1 \le k \le d_j} \lambda_k^j \varepsilon_{kk}^j,$$

and

$$\sum_{j} \|E_j \delta_j\|_{\pi,p} \le \sum_{j} \sum_{1 \le k \le d_j} \|\lambda_k^j \varepsilon_{kk}^j\|_{\pi,p}.$$

In addition,

$$\lambda_k^j \varepsilon_{kk}^j = \lambda_k^j \varepsilon_{kk}^j \cdot \lambda_k^j \varepsilon_{kk}^j,$$

 \mathbf{SO}

$$\|\lambda_k^j(^j\varepsilon_{kk}^i)_i\|_{\pi,p} \le \lambda_k^j a_j^{\frac{1}{p}} a_j^{\frac{1}{p}}.$$

Combining the above two inequalities, we have

$$\sum_{j} \|E_j \delta_j\|_{\pi,p} \le \sum_{j} \sum_{1 \le k \le d_j} \lambda_k^j a_j^{\frac{1}{p}} a_j^{\frac{1}{p}}.$$

By using (2.3)

$$\|(E_i)_{i \in I}\|_{\pi, p} \le \sum_j \sum_{1 \le k \le d_j} \lambda_k^j a_j^{\frac{1}{p}} a_j^{\frac{1}{p}},$$

and moreover

$$||E||_1 = \sum_j a_j \sum_{1 \le k \le d_j} \lambda_k^j.$$

Now, since

$$0 \le \frac{2}{p} - 1 \le 1 \Longrightarrow a_j^{\frac{2}{p} - 1} \le a_j \le M,$$

we have

$$\|(E_i)_{i \in I}\|_{\pi, p} \le \sum_j \sum_{1 \le k \le d_j} \lambda_k^j a_j^{\frac{2}{p} - 1} a_j \le M \sum_j a_j \sum_{1 \le k \le d_j} \lambda_k^j = M \|E\|_1,$$

and hence

$$|E||_1 \le |||E|||_{\pi,p} \le ||E||_{\pi,p} \le M ||E||_1.$$

The following two corollaries follow from Theorem 2.6, Proposition 2.7 and Theorem 2.8.

Corollary 2.9. Let $p \ge 2$. Then $\mathfrak{E}_p(I)$ has S-property if and only if I is finite.

Corollary 2.10. Let $1 \le p < 2$ and $\sup_{i \in I} a_i < \infty$. Then $\mathfrak{E}_p(I)$ has S-property if and only if p = 1.

Remark 2.11. The above two corollaries can be similarly proved for the case π -property.

3. BIPROJECTIVITY OF $\mathfrak{E}_p(I)$

In the following proposition which the proof is straightforward, we use \oplus_1 to denote the ℓ_1 -direct sum of Banach spaces.

Theorem 3.1. If E_{α} (for $\alpha \in A$) and F_{β} (for $\beta \in B$) are Banach spaces, then

$$(\oplus_1 E_\alpha) \hat{\otimes} (\oplus_1 F_\beta) = \oplus_1 (E_\alpha \hat{\otimes} F_\beta)$$

From now on, we put $a_i = d_i$ for each $i \in I$. Let M_i stands for the algebra of $d_i \times d_i$ matrices with $||T|| = d_i ||T||_1 = d_i (trace(T^*T)^{\frac{1}{2}})$, and M_{ij} for the algebra of $d_i d_j \times d_i d_j$ matrices with $||T|| = d_i d_j ||T||_1$. It is easy to see that $\oplus_1 M_i$ and $\mathfrak{E}_1(I)$ are isometric. Similarly by Proposition 3.1, $\mathfrak{E}_1(I) \otimes \mathfrak{E}_1(I)$ and $\mathfrak{E}_1(I \times I)$ are isometric with $\oplus_1(M_i \otimes M_j)$ and $\oplus_1 M_{ij}$ respectively. The norm-decreasing maps $\rho_{i,j} : M_i \otimes M_j \to M_{ij}$ give a norm-decreasing map $\rho : \mathfrak{E}_1(I) \otimes \mathfrak{E}_1(I) \to \mathfrak{E}_1(I \times I)$.

Theorem 3.2. If $\sup_{i \in I} d_i < \infty$, then $\mathfrak{E}_1(I) \hat{\otimes} \mathfrak{E}_1(I) = \mathfrak{E}_1(I \times I)$.

Proof. Injectivity of ρ follows from injectivity of the corresponding map between $\oplus_1(M_i \hat{\otimes} M_j)$ and $\oplus_1 M_{ij}$. But $M_{i,j}$ may be realized, as a linear space, as $M_i \hat{\otimes} M_j$. Because these spaces are finite dimensional, the linear isomorphism between $M_{i,j}$ and $M_i \hat{\otimes} M_j$ is bounded with both bounds dependent only on the dimensions. Hence if the dimensions are bounded, then the maps between the ℓ_1 -direct sums enjoy the same property. Therefore, ρ^{-1} exists and is bounded.

Theorem 3.3. The following assertions are equivalent. (i) $\mathfrak{E}_1(I)$ is biprojective. (ii) $\mathfrak{E}_1(I)$ is weakly amenable. (iii) $\sup_{i \in I} d_i < \infty$.

Proof. By 5.3.13 of [7], (i) implies (ii) and if $\mathfrak{E}_1(I)$ is weakly amenable, then by [8], $\sup_{i \in I} d_i < \infty$. Let $\sup_{i \in I} d_i < \infty$, then by Proposition 3.2, $\mathfrak{E}_1(I) \hat{\otimes} \mathfrak{E}_1(I) = \mathfrak{E}_1(I \times I)$. Define $\varrho : \mathfrak{E}_1(I) \longrightarrow \mathfrak{E}_1(I \times I)$ by $\varrho((E_i)) = (E_i \delta_{(i,i)})$. It is easy to check that ϱ is a bounded $\mathfrak{E}_1(I)$ -bimodule morphism which is the right inverse for $\pi : \mathfrak{E}_1(I) \hat{\otimes} \mathfrak{E}_1(I) \longrightarrow \mathfrak{E}_1(I)$ and so $\mathfrak{E}_1(I)$ is biprojective. \Box

Corollary 3.4. $\mathfrak{E}_p(I)$ is biprojective if and only if p = 1 and $\sup_{i \in I} d_i < \infty$ or I is finite.

Proof. The sufficient condition is evident. Let p = 1 and $\sup_{i \in I} d_i < \infty$, then by Proposition 3.3, $\mathfrak{E}_1(I)$ is biprojective. Also it is evident that $\mathfrak{E}_p(I)$ is biprojective if I is finite. Now let $\mathfrak{E}_p(I)$ is biprojective. Since $\mathfrak{E}_p(I)$ has π -property, the result can be deduced from Corollary 2.9 and Corollary 2.10.

4. Applications

Let G be a compact group with dual \widehat{G} (the set of all irreducible representations of G). Let H_{π} be the representation space of π for each $\pi \in \widehat{G}$. The algebras $\mathfrak{E}(\widehat{G})$ and $\mathfrak{E}_p(\widehat{G})$ for $p \in [1, \infty] \cup \{0\}$, are defined as mentioned above with each a_{π} equals to the dimension d_{π} of $\pi \in \widehat{G}$ (c.f Definition 28.34 of [4]).

A unitary representation π of G is *primary* if the center $C(\pi)$, i.e., the space of interwining operators of the representations π and π , is trivial. The group G is said to be of *type I* if every primary representation of G is a direct sum of copies of some irreducible representations (for complete discussion and proof of the following two theorem, see [2]).

Theorem 4.1. Every compact group is of type I.

Theorem 4.2. If either G_1 or G_2 is of type I, then there exists a bijection between $\widehat{G_1} \times \widehat{G_2}$ and $\widehat{G_1} \times \widehat{G_2}$.

The following proposition is a consequence of Proposition 3.2, Theorem 4.1 and Theorem 4.2.

Theorem 4.3. If $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$, then $\mathfrak{E}_1(\widehat{G}) \hat{\otimes} \mathfrak{E}_1(\widehat{G}) = \mathfrak{E}_1(\widehat{G \times G})$.

Corollary 4.4. If $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$, then $A(G) \hat{\otimes} A(G) = A(G \times G)$.

Proof. By Theorem 34.32 of [4], the convolution Banach algebra A(G) is isometrically algebra isomorphic with $\mathfrak{E}_1(\widehat{G})$.

Remark 4.5. By Theorem 1. of [6], there is an integer M such that $d(\pi) \leq M$ for all $\pi \in \widehat{G}$ if and only if there is an open abelian subgroup of finite index in G.

Corollary 4.6. If G has an open abelian subgroup of finite index, then $A(G) \hat{\otimes} A(G) = A(G \times G)$.

Theorem 4.7. Let G be a compact group. Then, (i) (A(G), *) is biprojective if and only if $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$ and if and only if (A(G), *)is weakly amenable. (ii) $(L^2(G), *)$ is biprojective if and only if G is finite.

Proof. By above, (A(G), *) is isometrically algebra isometric with $\mathfrak{E}_1(\widehat{G})$, also by 28.43 of [4](Weyl-Peter Theorem) $(L^2(G), *)$ is isometrically algebra isometric with $\mathfrak{E}_2(\widehat{G})$.

Corollary 4.8. Let G be a compact group. Then (A(G), *) is biprojective if and only if there is an open abelian subgroup of finite index in G.

Acknowledgment

The referees have reviewed the paper very carefully. The authors express their deep thanks for the comments.

References

- H.G. Dales: Banach Algebras and Automatic Continuity. London Math. Soc. Monogr. Ser. Princeton Univ. Press, Princeton, 2000.
- 2. G.B. Folland: A course in abstract harmonic analysis. CRC Press, Tokyo, 1970.
- 3. I.C. Gohberg & M.G. Krein: Introduction to the theory of linear non-selfadjoint operators on Hilbert spaces. Amer. Math. Soc. Transl. Ser. 2, 1965.
- 4. E. Hewitt & K.A.E. Ross: Abstract harmonic analysis. Vol. II, Springer, Berlin, 1970.
- M. Lashkarizadeh Bami & H. Samea: Amenability and essential amenability of certain Banach algebras. Studia Sci. Math. Hungar. 44 (2007), no. 3, 377-390.
- C.C. Moore: Groups with finite dimensional irreducible representations. Trans. Amer. Math. Soc. 166 (1972), 401-410.
- V. Runde: Lectures on amenability. Lecture Notes in Math. Vol. 1774, Springer, Heidelberg, 2002.
- H. Samea: Derivations on matrix algebras with applications to harmonic analysis. Taiwanese J. Math. 15 (2011), no. 6, 2667-2687.

^aFaculty of mathematics, statistics and computer science, Semnan University, Semnan, Iran

 $Email \ address: {\tt fhabibian@semnan.ac.ir}$

^bFaculty of mathematics, statistics and computer science, Semnan University, Semnan, Iran

Email address: raziehnoori@semnan.ac.ir