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BIPROJECTIVITY OF MATRIX BANACH ALGEBRAS
WITH APPLICATION TO COMPACT GROUPS

Fereidoun Habibian a, ∗ and Razieh Noori b

Abstract. In this paper, the necessary and sufficient conditions are considered for
biprojectivity of Banach algebras Ep(I). As an application, we investigate biprojec-
tivity of convolution Banach algebras A(G) and L2(G) on a compact group G.

1. Introduction

The Banach algebras Ep(I), where p ∈ [1,∞] ∪ {0}, have been introduced and
extensively studied in Section 28 of [4]. Recently, amenability, weak amenability
and approximate weak amenability have been studied by H. Samea in [8](see also
[5]). The present paper is going to investigate biprojectivity of Banach algebras
Ep(I), together with their applications to a number of convolution Banach algebras
on compact groups.

Let H be an n-dimensional Hilbert space and suppose that B(H) is the space
of all linear operators on H. Clearly we can identify B(H) with Mn(C) (the space
of all n × n-matrices on C). For A ∈ Mn(C), let A∗ ∈ Mn(C) by (A∗)ij = Aji

(1 ≤ i, j ≤ n), and let |A| denote the unique positive-definite square root of AA∗.
A is called unitary, if A∗A = AA∗ = I, where I is the n × n-identity matrix.
For E ∈ B(H), let (λ1, . . . , λn) be the sequence of eigenvalues of the operator |E|,
written in any order. Define ‖E‖ϕ∞ = max1≤i≤n |λi|, and ‖E‖ϕp = (

∑n
i=1 |λi|p)

1
p

(1 ≤ p < ∞). For more details see Definition D.37 and Theorem D.40 of [4].
Let I be an arbitrary index set. For each i ∈ I, let Hi be a finite dimensional

Hilbert space of dimension di, and let ai ≥ 1 be a real number. The ∗-algebra∏
i∈I B(Hi) will be denoted by E(I); scaler multiplication, addition, multiplication,
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and the adjoint of an element are defined coordinate-wise. Let E = (Ei) be an

element of E(I). We define ‖E‖p :=
(∑

i∈I ai‖Ei‖p
ϕp

) 1
p (1 ≤ p < ∞), and ‖E‖∞ =

supi∈I ‖Ei‖ϕ∞ . For 1 ≤ p ≤ ∞, Ep(I) is defined as the set of all E ∈ E(I) for which
‖E‖p < ∞.

For a locally compact group G and a function f : G → C, f̌ is defined by
f̌(x) = f(x−1) (x ∈ G). Let A(G) (or K(G), defined in 35.16 of [4]) consists of all
functions h in C0(G) that can be written in at least one way as

∑∞
n=1 fn ∗ ǧn, where

fn, gn ∈ L2(G), and
∑∞

n=1 ‖fn‖2‖gn‖2 < ∞. For h ∈ A(G), define

‖h‖A(G) = inf

{ ∞∑

n=1

‖fn‖2‖gn‖2 : h =
∞∑

n=1

fn ∗ ǧn

}
.

With this norm A(G) is a Banach space. For more details see 35.16 of [4].
As [1], let (A, ‖.‖) be a normed algebra, and let I1, ..., In be ideals in A, then I1...In

is an ideal in A; we transfer the projective norm from I1 ⊗ ...⊗ In into I1.....In. So
that, for A ∈ I1.....In, we have

‖a‖π = inf
{ m∑

j=1

‖a1,j‖....‖an,j‖ ; a =
m∑

j=1

a1,j .....an,j , ai,j ∈ Ii

}
.

Clearly ‖.‖π is an algebra norm on I1.....In with ‖a‖ ≤ ‖a‖π (a ∈ I1...In); the norm
‖.‖π is again called the projective norm. In particular, we may consider ‖.‖π on
A2. Let A be a Banach algebra. Then the continuous linear map πA : A⊗̂A → A

such that πA(x ⊗ y) = ab (a, b ∈ A) is the projective induced product map and
Iπ = kerπA. The quotient norm on the image πA(A⊗̂A) ∼= (A⊗̂A)

ker πA
is denoted by

|||.|||π, so that

|||a|||π = inf
{ ∞∑

j=1

‖aj‖‖bj‖ ; a =
∞∑

j=1

ajbj

}
( a ∈ πA(A⊗̂A).

Note that by 2 · 1 · 15 of [1],

(1.1) ‖a‖ ≤ |||a|||π ≤ ‖a‖π (a ∈ A2).

A normed algebra A has S-property (π-property) if there is a constant C > 0 such
that

‖a‖π ≤ c‖a‖ (|||a|||π ≤ c‖a‖) (a ∈ A2).
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Clearly, If A has S-property, then A has π-property. A Banach algebra A is bipro-
jective if πA : A⊗̂A −→ A has a bounded right inverse as an A-bimodule homomor-
phism. By proposition 2.8.41 of [1], if A is biprojective then πA(A⊗̂A) = A and A

has π-property.

2. Main Results

In this section, among other results, we obtain the necessary and sufficient condi-
tions such that Ep(I) for p ≥ 1, has π-property and as a result we apply π-property
of Ep(I) to find the necessary and sufficient conditions for biprojectivity of Ep(I).

Theorem 2.1. Suppose that p ≥ 1 and A ∈ E p
2
(I). Then there are B,C ∈ Ep(I)

such that A = B.C and ‖B‖p = ‖C‖p = ‖A‖
1
2
p
2
.

Proof. First suppose p 6= ∞. By Notation D.26 (i) of [4], for i ∈ I, |Ai| can be
written uniquely in the form |Ai| =

∑n
j=1 bj

iQ
j
i , where the bj

i s are distinct positive
numbers and Qi

js are projections onto pairwise orthogonal nonzero subspaces of Hi

and |Ai| 12 =
∑n

j=1 (bj
i )

1
2 Qj

i . Therefore, |Ai| = |Ai| 12 .|Ai| 12 . For i ∈ I, according to
the polar decomposition, there is Wi ∈ U(Hi) (the set of all unitary operators on
Hi) such that

Ai = |Ai|.Wi = |Ai|
1
2 .|Ai|

1
2 .Wi.

Let Bi = |Ai| 12 and Ci = |Ai| 12 .Wi. By Lemma 1.1 of [?]

‖Bi‖p
ϕp

= ‖|Ai|
1
2 ‖p

ϕp
= ‖Ai‖

p
2
ϕ p

2
,

therefore,

‖B‖p =
(∑

i

ai‖Bi‖p
ϕp

) 1
p =

(∑

i

ai‖Ai‖
p
2
ϕ p

2

) 2
p
· 1
2 = ‖A‖

1
2
p
2

< ∞.

So B ∈ Ep(I). The rest of the proof follows easily from Theorem D. 41 of [4] and
Lemma 1.1 of [5]. For p = ∞ the proof is similar. ¤

Corollary 2.2. If p ≥ 1, then E p
2
(I) ⊆ Ep(I)Ep(I).

Let A be a Banach algebra. We set A[2] = A.A = {ab : a, b ∈ A} and A2 =
linA[2] = linA.A =

{∑n
i=1 αiaibi : α1, ..., αn ∈ C, a1, ..., an, b1, ..., bn ∈ A

}
.

Theorem 2.3. If p ≥ 1, then E2
p(I) = E

[2]
p (I) = E p

2
(I).
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Proof. It is enough to show that if E,F ∈ Ep(I), then EF ∈ E p
2
(I). By using

Theorem 2 · 3 of [5] for p = q, and applying Hölder inequality, we obtain

‖EF‖
p
2
p
2

=
∑

i ai‖(EF )i‖
p
2
ϕ p

2

≤ ∑
i ai‖Ei‖

p
2
ϕp‖Fi‖

p
2
ϕp

≤ ∑
i a

1
2
i ‖Ei‖

p
2
ϕpa

1
2
i ‖Fi‖

p
2
ϕp

≤
(∑

i ai‖Ei‖p
ϕp

) 1
2
(∑

i ai‖Fi‖p)ϕp

) 1
2

=
(
‖E‖p

p

) 1
2
(
‖F‖p

p

) 1
2

< ∞.

¤

Theorem 2.4. If r > p ≥ 1, then Ep(I) E Er(I).

Proof. By Theorem 28.32 of [4], Ep(I) ⊆ Er(I). Let A ∈ Er(I) and B ∈ Ep(I).
For each i ∈ I, we denote the sequence of eigenvalues of Ai by sj(Ai). Now, if
Ai, Bi ∈ B(Hi) , then by 2.2 and 2.3 of [3],

sj(AiBi) ≤ ‖Ai‖ϕ∞ .sj(Bi),

sj(BiAi) ≤ ‖Ai‖ϕ∞ .sj(Bi).

Thus

‖AiBi‖ϕp = (
∑

j

sj(AiBi)p)
1
p ≤ (

∑

j

‖Ai‖p
∞.sj(Bi)p)

1
p = ‖Ai‖ϕ∞‖Bi‖ϕp .

But A ∈ Er(I), hence A ∈ E∞(I) and

‖AB‖p
p =

∑

i

ai‖AiBi‖p
ϕp
≤

∑

i

ai‖Ai‖p
ϕ∞‖Bi‖p

ϕp
≤ ‖A‖p

∞‖B‖p
ϕp

< ∞.

Therefore, AB ∈ Ep(I) and the proof is complete. ¤

Corollary 2.5. If p ≥ 1, then E p
2
(I) E Ep(I).

Let ‖.‖π,p and ‖|.‖|π,p be the projective norms on Ep(I)Ep(I) and the quotient
norm from Ep(I)⊗̂Ep(I), respectively. Let

U(E(I)) = {(Ei)i∈I ∈ E(I) : Ei ∈ U(Hi)},
U, V ∈ U(E(I)) and E ∈ Ep(I). By Theorem D.41 of [4], we have

‖V EU‖p = (
∑

i

ai‖ViEiUi‖p
ϕp

)
1
p = (

∑

i

ai‖Ei‖p
ϕp

)
1
p = ‖E‖p.
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By polar decomposition, for i ∈ I, there is a unitary operator Ui such that UiEi =
|Ei|. Let U = (Ui)i∈I then

(2.1) ‖E‖π,p = ‖UE‖π,p = ‖(|Ei|)i∈I‖π,p.

Since the square root of a matrix is hermitian, then is diagonalizable, i.e. there is
a unitary operator Vi such that V −1

i |Ei|Vi = Ti, where Ti is a diagonal matrix. Let
V = (Vi)i∈I . Then

‖(|Ei|)i∈I‖π,p = ‖V |E|‖π,p = ‖(Ti)i∈I‖π,p.

By (2.1), ‖E‖π,p = ‖(Ti)i∈I‖π,p. By the similar procedure, we can prove that
|||E|||π,p = |||(Ti)i∈I |||π,p. Consequently, for analyzing ‖.‖π,p and |||.|||π,p it is enough
to focus on E = (Ei)i∈I of Ep(I), where each Ei is a diagonal matrix with positive
diagonal entries.
For the rest of the section we set p̃ = max{1, p

2}.

Theorem 2.6. Let 2 ≤ p < ∞. Then for each E ∈ E2
p(I),

‖E‖π,p = |||E|||π,p = ‖E‖p̃.

Proof. Suppose 2 ≤ p < ∞ and E ∈ E2
p(I). By Theorem 2.3, E ∈ E p

2
(I). Using

Theorem 2.1, it follows that ‖E‖π,p ≤ ‖E‖p̃. Also, if E =
∑∞

j=1 F (j)K(j) in Ep(I)
with

∑∞
j=1 ‖F (j)‖p‖K(j)‖p < ∞, then by Theorem 28 · 3 of [4], we have

‖E‖p̃ = ‖E‖ p
2
≤

∞∑

j=1

‖F (j)K(j)‖ p
2
≤

∞∑

j=1

‖F (j)‖p‖K(j)‖p < ∞,

which results ‖E‖p̃ ≤ |||E|||π,p. Then the result follows from (1.1). ¤

Theorem 2.7. ‖.‖p and ‖.‖p̃ are equivalent if and only if p = 1 or I is finite.

Proof. The sufficient condition is evident. Let

(2.2) K‖.‖p ≤ ‖.‖p̃ ≤ M‖.‖p,

for some K, M > 0, and p 6= 1. If 1 < p < 2, then p̃ = 1 and by (2.2), ‖.‖1 ≤ M‖.‖p,
that implies Ep(I) ⊆ E1(I) which is contradict with Theorem 28.32 of [4]. We can
repeat the same argument for the case p ≥ 2. ¤

For each i ∈ I, and 1 ≤ m, n ≤ di, let εmn be the elementary di × di-matrix such
that for 1 ≤ k, l ≤ di,

(εmn)kl =
{

1 if k = m, l = n
0 otherwise.
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Theorem 2.8. Let 1 ≤ p < 2. If M = supi∈I ai < ∞, then for each E ∈ E2
p(I)

‖E‖p̃ = ‖E‖1 ≤ |||E|||π,p ≤ ‖E‖π,p ≤ M‖E‖p̃ = M‖E‖1

Proof. Suppose that E =
∑∞

j=1 F (j)K(j) in Ep(I), where
∑∞

j=1 ‖F (j)‖p‖K(j)‖p < ∞.
Then Hölder inequality and Theorem 28 · 3 of [4], imply that

‖E‖1 ≤
∞∑

j=1

‖F (j)K(j)‖1 ≤
∞∑

j=1

‖F (j)‖2‖K(j)‖2 ≤
∞∑

j=1

‖F (j)‖p‖K(j)‖p < ∞.

Therefore, ‖E‖1 = ‖E‖p̃ ≤ |||E|||π,p. Let δi : I → R be defined by δi(j) = 1 if i = j

and δi(j) = 0 if i 6= j. Then (Ei)i∈I =
∑

j∈I Ejδj and

(2.3) ‖(Ei)i∈I‖π,p ≤ ‖
∑

j∈I

Ejδj‖π,p ≤
∑

j

‖Ejδj‖π,p

where

Ej =




λj
1 0 . . . 0
0 λj

2 . . . 0
...

...
. . .

...
0 0 . . . λj

dj




.

This gives
Ej =

∑

1≤k≤dj

λj
kε

j
kk,

and ∑

j

‖Ejδj‖π,p ≤
∑

j

∑

1≤k≤dj

‖λj
kε

j
kk‖π,p.

In addition,
λj

kε
j
kk = λj

kε
j
kk · λj

kε
j
kk,

so
‖λj

k(
jεi

kk)i‖π,p ≤ λj
ka

1
p

j a
1
p

j .

Combining the above two inequalities, we have
∑

j

‖Ejδj‖π,p ≤
∑

j

∑

1≤k≤dj

λj
ka

1
p

j a
1
p

j .

By using (2.3)

‖(Ei)i∈I‖π,p ≤
∑

j

∑

1≤k≤dj

λj
ka

1
p

j a
1
p

j ,

and moreover
‖E‖1 =

∑

j

aj

∑

1≤k≤dj

λj
k.
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Now, since

0 ≤ 2
p
− 1 ≤ 1 =⇒ a

2
p
−1

j ≤ aj ≤ M,

we have

‖(Ei)i∈I‖π,p ≤
∑

j

∑

1≤k≤dj

λj
ka

2
p
−1

j aj ≤ M
∑

j

aj

∑

1≤k≤dj

λj
k = M‖E‖1,

and hence

‖E‖1 ≤ |||E|||π,p ≤ ‖E‖π,p ≤ M‖E‖1.

¤

The following two corollaries follow from Theorem 2.6, Proposition 2.7 and The-
orem 2.8.

Corollary 2.9. Let p ≥ 2. Then Ep(I) has S-property if and only if I is finite.

Corollary 2.10. Let 1 ≤ p < 2 and supi∈I ai < ∞. Then Ep(I) has S-property if
and only if p = 1.

Remark 2.11. The above two corollaries can be similarly proved for the case π-
property.

3. Biprojectivity of Ep(I)

In the following proposition which the proof is straightforward, we use ⊕1 to
denote the `1-direct sum of Banach spaces.

Theorem 3.1. If Eα (for α ∈ A) and Fβ (for β ∈ B) are Banach spaces, then

(⊕1Eα)⊗̂(⊕1Fβ) = ⊕1(Eα⊗̂Fβ)

From now on, we put ai = di for each i ∈ I. Let Mi stands for the algebra of
di × di matrices with ‖T‖ = di‖T‖1 = di(trace(T ∗T )

1
2 ), and Mij for the algebra of

didj×didj matrices with ‖T‖ = didj‖T‖1. It is easy to see that ⊕1Mi and E1(I) are
isometric. Similarly by Proposition 3.1, E1(I)⊗̂E1(I) and E1(I×I) are isomeric with
⊕1(Mi⊗̂Mj) and ⊕1Mij respectively. The norm-decreasing maps ρi,j : Mi⊗̂Mj →
Mij give a norm-decreasing map ρ : E1(I)⊗̂E1(I) → E1(I × I).

Theorem 3.2. If supi∈I di < ∞, then E1(I)⊗̂E1(I) = E1(I × I).
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Proof. Injectivity of ρ follows from injectivity of the corresponding map between
⊕1(Mi⊗̂Mj) and ⊕1Mij . But Mi,j may be realized, as a linear space, as Mi⊗̂Mj .
Because these spaces are finite dimensional, the linear isomorphism between Mi,j

and Mi⊗̂Mj is bounded with both bounds dependant only on the dimensions. Hence
if the dimensions are bounded, then the maps between the `1-direct sums enjoy the
same property. Therefore, ρ−1 exists and is bounded. ¤

Theorem 3.3. The following assertions are equivalent.
(i)E1(I) is biprojective.
(ii)E1(I) is weakly amenable.
(iii) supi∈I di < ∞.

Proof. By 5.3.13 of [7], (i) implies (ii) and if E1(I) is weakly amenable, then by
[8], supi∈I di < ∞. Let supi∈I di < ∞, then by Proposition 3.2, E1(I)⊗̂E1(I) =
E1(I × I). Define % : E1(I) −→ E1(I × I) by %((Ei)) = (Eiδ(i,i)). It is easy to
check that % is a bounded E1(I)-bimodule morphism which is the right inverse for
π : E1(I)⊗̂E1(I) −→ E1(I) and so E1(I) is biprojective. ¤

Corollary 3.4. Ep(I) is biprojective if and only if p = 1 and supi∈I di < ∞ or I is
finite.

Proof. The sufficient condition is evident. Let p = 1 and supi∈I di < ∞, then by
Proposition 3.3, E1(I) is biprojective. Also it is evident that Ep(I) is biprojective if
I is finite. Now let Ep(I) is biprojective. Since Ep(I) has π-property, the result can
be deduced from Corollary 2.9 and Corollary 2.10. ¤

4. Applications

Let G be a compact group with dual Ĝ (the set of all irreducible representations
of G). Let Hπ be the representation space of π for each π ∈ Ĝ. The algebras E(Ĝ)
and Ep(Ĝ) for p ∈ [1,∞]∪ {0}, are defined as mentioned above with each aπ equals
to the dimension dπ of π ∈ Ĝ (c.f Definition 28.34 of [4]).

A unitary representation π of G is primary if the center C(π), i.e., the space of
interwining operators of the representations π and π, is trivial. The group G is said
to be of type I if every primary representation of G is a direct sum of copies of some
irreducible representations (for complete discussion and proof of the following two
theorem, see [2]).
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Theorem 4.1. Every compact group is of type I.

Theorem 4.2. If either G1 or G2 is of type I, then there exists a bijection between
Ĝ1 × Ĝ2 and Ĝ1 ×G2.

The following proposition is a consequence of Proposition 3.2, Theorem 4.1 and
Theorem 4.2.

Theorem 4.3. If sup
π∈Ĝ

dπ < ∞, then E1(Ĝ)⊗̂E1(Ĝ) = E1(Ĝ×G).

Corollary 4.4. If sup
π∈Ĝ

dπ < ∞, then A(G)⊗̂A(G) = A(G×G).

Proof. By Theorem 34.32 of [4], the convolution Banach algebra A(G) is isometri-
cally algebra isomorphic with E1(Ĝ). ¤

Remark 4.5. By Theorem 1. of [6], there is an integer M such that d(π) ≤ M for
all π ∈ Ĝ if and only if there is an open abelian subgroup of finite index in G.

Corollary 4.6. If G has an open abelian subgroup of finite index, then A(G)⊗̂A(G) =
A(G×G).

Theorem 4.7. Let G be a compact group. Then,
(i) (A(G), ∗) is biprojective if and only if sup

π∈Ĝ
dπ < ∞ and if and only if (A(G), ∗)

is weakly amenable.
(ii) (L2(G), ∗) is biprojective if and only if G is finite.

Proof. By above, (A(G), ∗) is isometrically algebra isometric with E1(Ĝ), also by
28.43 of [4](Weyl-Peter Theorem) (L2(G), ∗) is isometrically algebra isometric with
E2(Ĝ). ¤

Corollary 4.8. Let G be a compact group. Then (A(G), ∗) is biprojective if and
only if there is an open abelian subgroup of finite index in G.
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