• Title/Summary/Keyword: Bailey's identities

Search Result 7, Processing Time 0.022 seconds

CERTAIN NEW WP-BAILEY PAIRS AND BASIC HYPERGEOMETRIC SERIES IDENTITIES

  • Ali, S. Ahmad;Rizvi, Sayyad Nadeem Hasan
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.885-898
    • /
    • 2017
  • The Bailey lemma has been a powerful tool in the discovery of identities of Rogers-Ramanujan type and also ordinary and basic hyper-geometric series identities. The mechanism of Bailey lemma has also led to the concepts of Bailey pair and Bailey chain. In the present work certain new WP-Bailey pairs have been established. We also have deduced a number of basic hypergeometric series identities as an application of new WP-Bailey pairs.

BAILEY PAIRS AND STRANGE IDENTITIES

  • Lovejoy, Jeremy
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1015-1045
    • /
    • 2022
  • Zagier introduced the term "strange identity" to describe an asymptotic relation between a certain q-hypergeometric series and a partial theta function at roots of unity. We show that behind Zagier's strange identity lies a statement about Bailey pairs. Using the iterative machinery of Bailey pairs then leads to many families of multisum strange identities, including Hikami's generalization of Zagier's identity.

FURTHER EXTENSION OF TWO RESULTS INVOLVING 0F1 DUE TO BAILEY

  • Groth, Frederick;Choi, Junesang;J, Prathima;Rathie, Arjun Kumar
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.597-600
    • /
    • 2018
  • Bailey presented two Bailey presented two interesting identities involving $_0F_1$, which have been generalized by Choi and Rathie who used two hypergeometric summation formulas due to Qureshi et al. In this note, we aim to show how one can establish, in an elementary way, two generalized formulas involving $_0F_1$ which include the above-mentioned identities as special cases. interesting identities involving 0F1, which

An Identity Involving Product of Generalized Hypergeometric Series 2F2

  • Kim, Yong Sup;Choi, Junesang;Rathie, Arjun Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.293-299
    • /
    • 2019
  • A number of identities associated with the product of generalized hypergeometric series have been investigated. In this paper, we aim to establish an identity involving the product of the generalized hypergeometric series $_2F_2$. We do this using the generalized Kummer-type II transformation due to Rathie and Pogany and another identity due to Bailey. The result presented here, being general, can be reduced to a number of relatively simple identities involving the product of generalized hypergeometric series, some of which are observed to correspond to known ones.

OTHER PROOFS OF KUMMER'S SECOND THEOREM

  • Malani, Shaloo;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.129-133
    • /
    • 2001
  • The aim of this research note is to derive the well known Kummer's second theorem by transforming the integrals which represent some generalized hypergeometric functions. This theorem can also be shown by combining two known Bailey's and Preece's identities for the product of generalized hypergeometric series.

  • PDF

Reduction Formulas for Srivastava's Triple Hypergeometric Series F(3)[x, y, z]

  • CHOI, JUNESANG;WANG, XIAOXIA;RATHIE, ARJUN K.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.439-447
    • /
    • 2015
  • Very recently the authors have obtained a very interesting reduction formula for the Srivastava's triple hypergeometric series $F^{(3)}$(x, y, z) by applying the so-called Beta integral method to the Henrici's triple product formula for the hypergeometric series. In this sequel, we also present three more interesting reduction formulas for the function $F^{(3)}$(x, y, z) by using the well known identities due to Bailey and Ramanujan. The results established here are simple, easily derived and (potentially) useful.

ON A NEW CLASS OF SERIES IDENTITIES

  • SHEKHAWAT, NIDHI;CHOI, JUNESANG;RATHIE, ARJUN K.;PRAKASH, OM
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.339-352
    • /
    • 2015
  • We aim at giving explicit expressions of $${\sum_{m,n=0}^{{\infty}}}{\frac{{\Delta}_{m+n}(-1)^nx^{m+n}}{({\rho})_m({\rho}+i)_nm!n!}$$, where i = 0, ${\pm}1$, ${\ldots}$, ${\pm}9$ and $\{{\Delta}_n\}$ is a bounded sequence of complex numbers. The main result is derived with the help of the generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Choi. Further some special cases of the main result considered here are shown to include the results obtained earlier by Kim and Rathie and the identity due to Bailey.