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FURTHER EXTENSION OF TWO RESULTS INVOLVING 0F1

DUE TO BAILEY

Frederick Groth, Junesang Choi∗, Prathima J
and Arjun Kumar Rathie

Abstract. Bailey presented two interesting identities involving 0F1, which

have been generalized by Choi and Rathie who used two hypergeometric

summation formulas due to Qureshi et al. In this note, we aim to show
how one can establish, in an elementary way, two generalized formulas in-

volving 0F1 which include the above-mentioned identities as special cases.

1. Introduction

We begin by recalling two interesting results (see [1, Eqs. (3.2) and (3.3)])
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where pFq denotes the familiar generalized hypergeometric function (see, e.g.,
[5, Section 1.5]).

Choi and Rathie [2, Eqs. (3.1) and (3.2)] generalized Bailey’s results (1.1)
and (1.2) to present
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Here and in the following, let R, R+, R−, and N be the sets of real numbers,
positive real numbers, negative real numbers, and positive integers, respectively.
They [2] proved (1.3) and (1.4) by using two hypergeometric summation formu-
las [4, Eqs (18) and (19)]. Choi and Rathie [3] also derived (1.3) and (1.4) in
an elementary way.

In this note, we aim to present two formulas which generalize the above-
mentioned results (1.1), (1.2), (1.3) and (1.4).

2. Main results

Here we establish two identities which include (1.1), (1.2), (1.3) and (1.4) as
special cases, asserted by the following theorem.

Theorem 2.1. Let a, b, θ be given in (1.5). Also let x ∈ R and k ∈ N. Then
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Proof. Let L be the left side of (2.1). By using (see, e.g., [5, p. 73])
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We have
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Using a + ib =
√
a2 + b2 eiθ in (2.3) and expanding the resulting exponential,

we have

L = <

exp

(a2 + b2
) k

2

<(a+ ib)k
eikθ x


= <


∞∑
m=0

(
a2 + b2

) km
2

m! {<(a+ ib)k}m
xm eikmθ

 ,

which, upon considering eiα = cosα+ i sinα, leads to the right side of (2.1).

The proof of (2.2) would run parallel to that of (2.1), by considering (see,
e.g., [5, p. 73])
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We omit the details. �

3. Concluding remarks

The method used here is very elementary. Setting k = 1 in (2.1) and (2.2)
yield, respectively, (1.3) and (1.4). Further, Setting k = 1 and a = b in (2.1)
and (2.2) yield, respectively, (1.1) and (1.2).
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