DOI QR코드

DOI QR Code

An Identity Involving Product of Generalized Hypergeometric Series 2F2

  • Kim, Yong Sup (Department of Mathematics Education, Wonkwang University) ;
  • Choi, Junesang (Department of Mathematics, Dongguk University) ;
  • Rathie, Arjun Kumar (Department of Mathematics, Vedant College of Engineering & Technology (Rajasthan Technical University))
  • Received : 2018.08.27
  • Accepted : 2018.10.16
  • Published : 2019.06.23

Abstract

A number of identities associated with the product of generalized hypergeometric series have been investigated. In this paper, we aim to establish an identity involving the product of the generalized hypergeometric series $_2F_2$. We do this using the generalized Kummer-type II transformation due to Rathie and Pogany and another identity due to Bailey. The result presented here, being general, can be reduced to a number of relatively simple identities involving the product of generalized hypergeometric series, some of which are observed to correspond to known ones.

Keywords

References

  1. W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc. (2), 28(4)(1928), 242-254. https://doi.org/10.1112/plms/s2-28.1.242
  2. W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics 32, Stechert-Hafner, New York, 1964.
  3. J. Choi, A. K. Rathie and B. Bhojak, On Preece's identity and other contiguous results, Commun. Korean Math. Soc., 20(1)(2005), 169-178. https://doi.org/10.4134/CKMS.2005.20.1.169
  4. H. Exton, On the reducibility of the Kampe de Feriet function, J. Comput. Appl. Math., 83(1997), 119-121. https://doi.org/10.1016/S0377-0427(97)86597-1
  5. Y. S. Kim, S. Gaboury and A. K. Rathie, Applications of extended Watson's summation theorem, Turkish J. Math., 42(2018), 418-443.
  6. W. Koepf, Hypergeometric summation. An algorithmic approach to summation and special function identities, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1998.
  7. E. E. Kummer, Uber die hypergeometrische Reihe $1+\frac{{\alpha}.{\beta}x}{1.{\gamma}}+\frac{{\alpha}({\alpha}+1){\beta}({\beta}+1)x^2}{1{\cdot}2{\cdot}{\gamma}({\gamma}+1)}}$+..., J. Reine Angew Math., 15(1836), 127-172.
  8. E. E. Kummer, Collected Papers, Volume II: Function theory, geometry and miscellaneous, Springer-Verlag, Berlin, 1975.
  9. R. Paris, A Kummer-type transformation for a $_2F_2$ hypergeometric function, J. Comput. Appl. Math., 173(2005), 379-382. https://doi.org/10.1016/j.cam.2004.05.005
  10. C. T. Preece, The product of two generalized hypergeometric functions, Proc. London Math. Soc. (2), 22(1924), 370-380. https://doi.org/10.1112/plms/s2-22.1.370
  11. A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. 3: More Special Functions, Translated from the Russian by G. G. Gould. Gordon and Breach Science Publishers, New York, 1990.
  12. E. D. Rainville, Special Functions, Macmillan Co., New York, 1960; Reprinted by Chelsea Publishing Co., Bronx, New York, 1971.
  13. A. K. Rathie, A short proof of Preece's identities and other contiguous results, Rev. Mat. Estatist., 15(1997), 207-210.
  14. A. K. Rathie and J. Choi, A note on generalizations of Preece's identity and other contiguous results, Bull. Korean Math. Soc., 35(1998), 339-344.
  15. A. K. Rathie and J. Pogany, New summation formula for $_3F_2(\frac{1}{2})$ and a Kummer-type II transformation of $_2F_2(x)$, Math. Commun., 13(1)(2008), 63-66.
  16. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.