DOI QR코드

DOI QR Code

BAILEY PAIRS AND STRANGE IDENTITIES

  • Received : 2022.04.09
  • Accepted : 2022.06.02
  • Published : 2022.09.01

Abstract

Zagier introduced the term "strange identity" to describe an asymptotic relation between a certain q-hypergeometric series and a partial theta function at roots of unity. We show that behind Zagier's strange identity lies a statement about Bailey pairs. Using the iterative machinery of Bailey pairs then leads to many families of multisum strange identities, including Hikami's generalization of Zagier's identity.

Keywords

References

  1. S. Ahlgren and B. Kim, Dissections of a "strange" function, Int. J. Number Theory 11 (2015), no. 5, 1557-1562. https://doi.org/10.1142/S1793042115400072
  2. S. Ahlgren, B. Kim, and J. Lovejoy, Dissections of strange q-series, Ann. Comb. 23 (2019), no. 3-4, 427-442. https://doi.org/10.1007/s00026-019-00447-6
  3. G. E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), no. 2, 267-283. http://projecteuclid.org/euclid.pjm/1102708707 102708707
  4. G. E. Andrews, q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series in Mathematics, 66, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.
  5. G. E. Andrews, The Theory of Partitions, reprint of the 1976 original, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
  6. G. E. Andrews, Bailey's transform, lemma, chains and tree, in Special functions 2000: current perspective and future directions (Tempe, AZ), 1-22, NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001. https://doi.org/10.1007/978-94-010-0818-1_1
  7. G. E. Andrews, J. Jimenez-Urroz, and K. Ono, q-series identities and values of certain L-functions, Duke Math. J. 108 (2001), no. 3, 395-419. https://doi.org/10.1215/S0012-7094-01-10831-4
  8. G. E. Andrews and J. A. Sellers, Congruences for the Fishburn numbers, J. Number Theory 161 (2016), 298-310. https://doi.org/10.1016/j.jnt.2014.10.001
  9. C. Bijaoui, H. U. Boden, B. Myers, R. Osburn, W. Rushworth, A. Tronsgard, and S. Zhou, Generalized Fishburn numbers and torus knots, J. Combin. Theory Ser. A 178 (2021), Paper No. 105355, 15 pp. https://doi.org/10.1016/j.jcta.2020.105355
  10. K. Bringmann and L. Rolen, Half-integral weight Eichler integrals and quantum modular forms, J. Number Theory 161 (2016), 240-254. https://doi.org/10.1016/j.jnt.2015.03.001
  11. F. G. Garvan, Congruences and relations for r-Fishburn numbers, J. Combin. Theory Ser. A 134 (2015), 147-165. https://doi.org/10.1016/j.jcta.2015.03.008
  12. A. Goswami, Congruences for generalized Fishburn numbers at roots of unity, Acta Arith. 199 (2021), no. 1, 77-102. https://doi.org/10.4064/aa200610-9-11
  13. A. Goswami and R. Osburn, Quantum modularity of partial theta series with periodic coefficients, Forum Math. 33 (2021), no. 2, 451-463. https://doi.org/10.1515/forum-2020-0201
  14. P. Guerzhoy, Z. A. Kent, and L. Rolen, Congruences for Taylor expansions of quantum modular forms, Res. Math. Sci. 1 (2014), Art. 17, 17 pp. https://doi.org/10.1186/s40687-014-0017-2
  15. K. Hikami, q-series and L-functions related to half-derivatives of the Andrews-Gordon identity, Ramanujan J. 11 (2006), no. 2, 175-197. https://doi.org/10.1007/s11139-006-6506-1
  16. K. Hikami and A. N. Kirillov, Torus knot and minimal model, Phys. Lett. B 575 (2003), no. 3-4, 343-348. https://doi.org/10.1016/j.physletb.2003.09.007
  17. K. Hikami and A. N. Kirillov, Hypergeometric generating function of L-function, Slater's identities, and quantum invariant, St. Petersburg Math. J. 17 (2006), no. 1, 143-156; translated from Algebra i Analiz 17 (2005), no. 1, 190-208. https://doi.org/10.1090/S1061-0022-06-00897-1
  18. J. Lovejoy, Quantum q-series identities, Hardy-Ramanujan J. 44 (2021), 61-73.
  19. J. Lovejoy, Bailey pairs and indefinite quadratic forms, II. False indefinite theta functions, Res. Number Theory 8 (2022), no. 2, Paper No. 24, 16 pp. https://doi.org/10.1007/s40993-022-00324-x
  20. J. Lovejoy and R. Osburn, Mock theta double sums, Glasg. Math. J. 59 (2017), no. 2, 323-348. https://doi.org/10.1017/S0017089516000197
  21. J. Mc Laughlin, Topics and methods in q-series, Monographs in Number Theory, 8, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018.
  22. L. J. Slater, A new proof of Rogers's transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460-475. https://doi.org/10.1112/plms/s2-53.6.460
  23. A. Straub, Congruences for Fishburn numbers modulo prime powers, Int. J. Number Theory 11 (2015), no. 5, 1679-1690. https://doi.org/10.1142/S1793042115400175
  24. S. O. Warnaar, 50 years of Bailey's lemma, in Algebraic combinatorics and applications (Gossweinstein, 1999), 333-347, Springer, Berlin, 2001.
  25. D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), no. 5, 945-960. https://doi.org/10.1016/S0040-9383(00)00005-7