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CKTHER PROOFS OF KUMMER'S SECOND THEOREM

Shaloo Malani and Junesang Choi

Abstract The aim of this research note is to derive the well known 

Kummer's second theorem by transforming the integrals which rep

resent some generalized hypergeometnc functions This theorem can 

also be shown by combining two known Bailey's and Preece's identities 

for the product of generalized hypergeometric series

1. Intrmixictioii

The generalized hypergeometric function [4] with p numerator and 
q denominator parameters is defined by

(1-1)
^•17 • , • ? Qp ;

pFq Z = ：。卩；為;Z)

0L ? , • , ? Bq)

_(%爲■ . . (%)n
n_0 . • • (0q)冗 n-

where (a)n denotes the Pochhammer symbol (or the shifted factorial, 
since (l)n = n!) defined, for any complex number a, by

'、 ，、 1 1 (n = 0)
(1.2) (a)n < / 丄1、 / 丄 q n o xI a[a + 1)... (a + — 1) (n — 17 2, 3,...),
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which can also be rewritten in the form: 

(1.3)
㈤n 十矽

「㈤'

where「is the well-known Gamma function, whose Weierstrass canon
ical product form is

(L4)
爬=을”i{(M 广/ 

n=l 、

7 being the Euler-Mascheroni constant defined by

(1.5) 7 := lim
n—>00

土 一 log n ) 으 0.577 215 664 901532 • • ■ .

With the notation (1.1), the Gaussian hypergeometric series is 2-^1, 
which is also denoted simply by F.

From the theory of differential equations, Kummer [2] established 
the following very interesting and useful result, which is, in the litera
ture, referred to as the Kummer's second theorem, via.

(L6) e x (Q； 2q; 2x) = qFi ; Q + -矿).

Later on, Bailey [1] established the result (1.6) in the form

(L7)
H / lx2

"르 1码(毛 2q; x) =0F1l--,a+ —
\ 匕*L U

by making use of classical Gauss's second summation theorem:

(1.8) 2-^1 1

=「(*)「(加 + 昇 + *) 

r(la+ I) r (昇+ *)

provided a + b=^ -1, -3, -5,....

a, b；]
!(«+&+1)； 2

■厶
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Very recently Rathie and Choi [5] derived the result (1.6) by using 
classical Gauss's summation theorem:

/I F a, b ； 1 r (c) r (c - a - b)
(L9) 2Fi[ =

provided 5i(c — a — ft) > 0.
The following results will be required in our present investigations.
Preece's identity [3]:

(L10) {iFi(a； 2a; a;)}2 = ex iF2 (a, a+ 2a; f)；

Bailey's result [1]:

(LLl)
9 / I \

/>; = 1 如一万；户，'2P —丄；4：g

Integral representation for 1F1 [4]:

(E)函(3 P，2)=編钦"[宀—尸部

Finite integral*

(1-13)
f1 m /I 2^-1 A r(a)r(|) q 丄 1 之2 
1/ (I) dx= r(a+i) °F1V ;a+2; T

provided 驼(a) > 0.
We are aiming at deriving Kummer's second theorem (1.6) by trans

forming the integrals (1.12) and (1.13). The equivalent form (1.7) of 
(1.6) can also be shown to be obtained by combining (1.10) and (1.11).

2. Derivation of Kummer's Second Theorem

Write (1.6) in 나xe form

(2-1)
MU 2a; 2x) — ex o-^i (-； ° + 云；拓")-
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By using (1.13), the right-hand side of (2.1) becomes

ex£fc±l)「次(i-i2)a-1 dt 
r(a)rQ) )

e(i+* (1 ―矽广L dt,

which, upon putting 1 + t = 2A and using duplication formula for the 
Gamma function (see [4, p. 24]), leads to

(2.2) K挡缥K [ e&J/—IQ —入) 

r(a)r(a)Jo ' )

By applying (1.12) to the integral part of (2.2), we find that (2.2) 
becomes (a; 2a: 2x). which completes 比尖꺼gofqf (2丄)

We conclude this note by remarking that the identity (1.7), which is 
equivalent to (1.6), can also be obtained from Preece's identity (1.10) 
and Bailey's identity (1.11) as follows: Combining (1.10) and (1.11), 
we obtain

ef {iFi(a; 2a- a:))2 = iF2 (a； a + ；, 2a;壬)

or
{"플 iFi(a； 2a; a：)}2 = {(而 (一； @ + f 京) }，

which, upon taking square root and considering the value when x = 0, 
immediately yields (1.7).
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