• 제목/요약/키워드: Atmosphere temperature

검색결과 2,372건 처리시간 0.028초

고순도 SiC 파우더를 이용한 반절연 SiC 단결정 성장 (Semi-Insulating SiC Single Crystals Grown with Purity Levels in SiC Source Materials)

  • 이채영;최정민;김대성;박미선;장연숙;이원재;양인석;김태희;첸시우팡;슈시앙강
    • 한국전기전자재료학회논문지
    • /
    • 제32권2호
    • /
    • pp.100-103
    • /
    • 2019
  • The change in vanadium amount according to the growth direction of vanadium-doped semi-insulated (SI) SiC single crystals using high-purity SiC powder was investigated. High-purity SiC powder and a porous graphite (PG) inner crucible were placed on opposite sides of SiC seed crystals. SI SiC crystals were grown on 2 inch 6H-SiC Si-face seeds at a temperature of $2,300^{\circ}C$ and growth pressure of 10~30 mbar of argon atmosphere, using the physical vapor transport (PVT) method. The sliced SiC single crystals were polished using diamond slurry. We analyzed the polytype and quality of the SiC crystals using high-resolution X-ray diffraction (XRD) and Raman spectroscopy. The resistivity of the SI SiC crystals was analyzed using contactless resistivity mapping (COREMA) measurements.

기계학습 군집 알고리즘을 이용한 미세먼지 비선형성 완화방안 (Non-linearity Mitigation Method of Particulate Matter using Machine Learning Clustering Algorithms)

  • 이상권;조경우;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.341-343
    • /
    • 2019
  • 고농도 미세먼지 발생이 증가함에 따라 미세먼지 예측에 많은 관심이 집중되고 있다. 미세먼지는 대기 중에 있는 직경 $10{\mu}m$ 이하의 밀입자 물질을 말하며, 온도, 상대습도, 풍속 등의 기상 변화에 영향을 받는다. 따라서 미세먼지 예측을 위해 기상 정보와의 상관관계를 분석하는 다양한 연구가 진행되었다. 하지만 미세먼지의 비선형적 시계열 분포는 예측 모델의 복잡도를 증가시키고, 부정확한 예측값을 초래할 수 있다. 본 연구에서는 기계학습의 군집 알고리즘 및 분류알고리즘을 이용하여 미세먼지의 비선형적 특성을 완화하고자 한다. 사용된 기계학습 알고리즘은 병합군집, 밀도기반군집이며, 각 알고리즘을 통한 군집결과를 비교, 분석하였다.

  • PDF

MULTILAYER SPECTRAL INVERSION OF SOLAR Hα AND CA II 8542 LINE SPECTRA WITH HEIGHT-VARYING ABSORPTION PROFILES

  • Chae, Jongchul;Cho, Kyuhyoun;Kang, Juhyung;Lee, Kyoung-Sun;Kwak, Hannah;Lim, Eun-Kyung
    • 천문학회지
    • /
    • 제54권5호
    • /
    • pp.139-155
    • /
    • 2021
  • We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption profile was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption profile is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model fitting. We apply this updated MLSI to two sets of Hα and Ca II line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We find that the new version of the MLSI satisfactorily fits most of the observed line profiles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral fibril, an umbral feature, and a fast downflow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca II 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.

NbC 코팅된 도가니를 사용한 고품질의 SiC 단결정 성장 (High quality SiC single crystal growth by using NbC-coated crucible)

  • 김정희;김우연;박미선;장연숙;이원재
    • 한국결정성장학회지
    • /
    • 제31권2호
    • /
    • pp.63-68
    • /
    • 2021
  • 본 연구에서는 NbC 코팅된 도가니가 SiC 단결정 품질에 미치는 영향을 조사하였다. 실험은 흑연 도가니와 NbC 코팅된 도가니를 사용하였으며, 두 실험의 결과를 체계적으로 비교 분석하였다. SiC 결정 성장은 Ar 분위기에서 2300℃ 이상의 온도와 5 Torr의 압력조건에서 PVT 법을 사용하여 진행하였다. 성장된 SiC 결정은 양면 그라인딩과 연마 가공 후 Raman 분석을 통해 결정상 분석, HR-XRD 분석으로 결정성을 분석하였다. 또한 KOH 에칭 후 광학현미경 분석과 SIMS 분석으로 결함 밀도 및 불순물 농도를 분석하여 두 웨이퍼의 품질을 비교하였다.

플래시라이트를 이용한 금속나노입자 기반 전극 및 금속유기골격체 합성 전략 (Synthesis Strategy for Electrodes and Metal-Organic Frameworks based on Metal Nanoparticle using Flashlight)

  • 임창용;백새연;박소연;김하민
    • 공업화학
    • /
    • 제31권6호
    • /
    • pp.591-595
    • /
    • 2020
  • Intensive pulsed light (IPL) 기술은 빛을 millisecond 단위의 짧은 시간에 상온, 상압 환경에서 대상 물질에 조사하여 에너지를 전달한다. 이렇게 단시간에 조사되는 특징을 가진 플래시라이트(flashlight)에 대한 관심의 증대로 IPL을 이용한 금속입자의 광소결 연구가 대표적으로 이루어져 왔으며, 최근에는 IPL을 다양한 물질 합성에 적용한 사례가 발표되고 있다. 본 총설 논문은 지금까지 연구되어 밝혀진 IPL을 활용한 다양한 물질 합성 전략들에 대한 것으로 IPL 기술을 이용한 물질 합성에 대한 이해를 증진시키고자 한다. 특히, 금속나노입자의 소결을 이용한 유연 전극제작 및 금속유기골격체(metal-organic framework, MOF) 합성을 다루었다. 전극제작의 핵심 요소인 전극의 산화 저항성과 전기전도도 향상을 위한 과정을 다루었고, 금속기판으로부터 금속유기골격체를 합성하는 과정을 설명하였다. 이를 향후 IPL을 이용한 전극 제작 및 물질 합성 응용에 관한 연구를 하는 연구자에게 이해하기 쉽게 설명하고자 하였다.

서울 수도권 지역의 토지 피복 변화가 여름철 도시열섬 강도와 체감온도에 미치는 영향 (Effects of Land Cover Change on Summer Urban Heat Island Intensity and Heat Index in Seoul Metropolitan Area, Korea)

  • 홍선옥;변재영;김도형;이상삼;김연희
    • 대기
    • /
    • 제31권2호
    • /
    • pp.143-156
    • /
    • 2021
  • This study investigates the impacts of land cover change due to urbanization on the Urban Heat Island Intensity (UHII) and the Heat Index (HI) over the Seoul metropolitan area using the Unified Model (UM) with the Met Office Reading Urban Surface Exchange Scheme (MORUSES) during the heat wave from 16, July to 5, August 2018. Two simulations are performed with the late 1980s land-use (EXP1980) and the late 2000s land-use (EXP2000). EXP2000 is verified using Automatic Weather Station (AWS) data from 85 points in the study area, and observation sites are classified into two categories according to the urban fraction change over 20 years; Category A is 0.2 or less increase, and Category B is 0.2 or more increase. The 1.5-m temperature and relative humidity in Category B increase by up to 1.1℃ and decreased by 7% at 1900 LST and 2000 LST, respectively. This means that the effect of the urban fraction changes is higher at night. UHII increases by up to 0.3℃ in Category A and 1.3℃ in Category B at 1900 LST. Analysis of the surface energy balance shows that the heat store for a short time during the daytime and release at nighttime with upward sensible heat flux. As a result of the HI, there is no significant difference between the two experiments during the daytime, but it increases 1.6℃ in category B during the nighttime (2200 LST). The results indicate that the urbanization increase both UHII, and HI, but the times of maximum difference between EXP1980 and EXP2000 are different.

Preparation and Characterization of Ordered Perovskite (CaLa) (MgMo) $_6$

  • Choy, Jin-Ho;Hong, Seung-Tae;Suh, Hyeong-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권6호
    • /
    • pp.345-349
    • /
    • 1988
  • The polycrystalline powder of (CaLa) (MgMo)$O_6$ has been prepared at $1350^{\circ}C$ in $H_2/H_2O$ and $N_2$ flowing atmosphere. The powder X-ray diffraction pattern indicates that (CaLa) (MgMo)$O_6$ has a monoclinic perovskite structure with the lattice constants $a_0=b_0=7.901(1){\AA}$, $c =7.875(1){\AA}\;and\;{\gamma}=89^{\circ}$16'(1'), which can be reduced to orthorhombic unit cell, a = 5.551(1) ${\AA}$, b = 5.622(1) ${\AA}$ and c = 7.875(1) ${\AA}$. The infrared spectrum shows two strong absorption bands with their maxima at 590($ν_3$) and 380($ν_4$) cm, which are attributed to $2T_{1u}$ modes indicating the existence of highly charged molybdenum octahedron $MoO_6$ in the crystal lattice. According to the magnetic susceptibility measurement, the compound follows the Curie-Weiss law below room temperature with the effective magnetic moment 1.83(1)$_{{\mu}B}$, which is well consistent with that of spin only value (1.73 $_{\mu}_B$) for $Mo^{5+}$ with $4d^1$-electronic configuration within the limit of experimental error. From the thermogravimetric analysis, it has been confirmed that (CaLa) (MgMo)$O_6$ decomposes gradually into $CaMoO_4,\;MoO_3,\;MgO,\;La_2O_3$ and unidentified phases due to the oxidation of $Mo^{5+}$ to $Mo^{6+}$.

고온 용융염계에서 Ni-Base 초합금의 부식거동 (Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt)

  • 조수행;강대승;홍순석;허진목;이한수
    • 대한금속재료학회지
    • /
    • 제46권9호
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동 (Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt)

  • 조수행;홍순석;강대승;박병흥;허진목;이한수
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Superfine-Nanocomposite Mo - Cu Powders Obtained by Using Planetary Ball Milling

  • Lee, Han-Chan;Moon, Kyoung-Il;Shin, Paik-Kyun;Lee, Boong-Joo
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1340-1345
    • /
    • 2018
  • Mo-10 at.% Cu nanocomposite powders were fabricated by using planetary ball-milling (PBM), a mechanical alloying technique for preparing nanocomposite alloy powders of metals with mutual insolubility, and the variations in the physical and the chemical characteristics with the process conditions were investigated. We observed that Mo-10 at.% Cu was an appropriate composition to ensure a good alloying grade and minimal welding between particles. The influences of the temperature and the milling conditions on the mechanical alloying process and the phase change of Mo-10 at.% Cu composite powders were investigated, and the particle and the grain sizes of the powders after mechanical alloying were confirmed. The Mo-10 at.% Cu powders showed homogeneous elemental distributions and no phase changes up to $1200^{\circ}C$; their compositions were retained after the mechanical alloying process. The finest grain size obtained was about 5 nm for powders processed using optimum PBM processing conditions: ball-to-powder weight ratio of 5 : 1, ambient air atmosphere, a milling time of 20 h, a rotation speed of 200 rpm, and a stearic acid content of 4 wt.% produced superfine-grained Mo-10 at.% Cu nanocomposite powders with an average grain size of 5 nm (which is smaller than that of other similar materials reported in the literature). The analytical results confirmed that the PBM technique presented here is a promising method for preparing superfine-grained Mo-10 at.% Cu powders with improved properties.