Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt

리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동

  • Received : 2008.07.24
  • Published : 2008.10.25

Abstract

The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mantyla, Corros. Sci. 46, 1311 (2004). https://doi.org/10.1016/j.corsci.2003.09.026
  2. R. A. Rapp, Corros. Sci. 44, 209 (2002). https://doi.org/10.1016/S0010-938X(01)00057-9
  3. J. G. Gonzalez, S. Haro, A. Martinez-Villafane, V. M. Salinas- Bravo, and J. Mat. Sci. Eng. A 435-436, 258 (2006). https://doi.org/10.1016/j.msea.2006.06.138
  4. S. Mitsushima, N. Kamiya, and K. I. Ota, J. Electrochem. Soc. 137, 2713 (1990). https://doi.org/10.1149/1.2087031
  5. B. Zhu, and G. Lindbergh, Electrochim. Acta 46, 2593 (2001). https://doi.org/10.1016/S0013-4686(01)00471-6
  6. B. P. Mohanty, and D. A. Shores, Corros. Sci. 46, 2893 (2004). https://doi.org/10.1016/j.corsci.2004.04.013
  7. A. Ruh, and M. Spiegel, Corros. Sci. 48, 679 (2006). https://doi.org/10.1016/j.corsci.2005.02.015
  8. Tz. Tzvetkoff, and J. Kolchakov, Mater. Chem. Phys. 87, 201 (2004). https://doi.org/10.1016/j.matchemphys.2004.05.039
  9. B. Wang, C. Sun, J. Gong, R. Huang, and L. Wen, Corros. Sci. 46, 519 (2004). https://doi.org/10.1016/S0010-938X(03)00184-7
  10. Q. M. Wang, Y. N. Wu, P. L. Ke, H. T. Cao, J. Gong, C. Sun, and L. S. Wen, Surf. Coat. Technol. 186, 389 (2004). https://doi.org/10.1016/j.surfcoat.2003.12.020
  11. R. Mobarra, A. H. Jafari, and M. Karaminezhaad, Surf. Coat. Technol. 201, 2202 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.043
  12. B. S. Sidhu, and S. Prakash, Surf. Coat. Technol. 166, 89 (2003). https://doi.org/10.1016/S0257-8972(02)00772-7
  13. Y. N. Wu, P. L. Ke, Q. M. Wang, C. Sun, and F. H. Wang, Corros. Sci. 46, 2925 (2004). https://doi.org/10.1016/j.corsci.2004.04.003
  14. A. R. Shankar, U. K. Mudali, R. Sole, H. S. Khatak, and B. Raj, J. Nucl. Mater. 372, 226 (2008). https://doi.org/10.1016/j.jnucmat.2007.03.175
  15. M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mantyla, Corros. Sci. 46, 1311 (2004). https://doi.org/10.1016/j.corsci.2003.09.026
  16. X. Ren, and F. Wang, Surf. Coat. Technol. 201, 30 (2006). https://doi.org/10.1016/j.surfcoat.2005.10.042
  17. L. Zhao, M. Parco, and E. Lugscheider, Surf. Coat. Technol. 179, 272 (2004). https://doi.org/10.1016/S0257-8972(03)00818-1
  18. M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang, and L. S. Wen, Surf. Coat. Technol. 200, 3942 (2006). https://doi.org/10.1016/j.surfcoat.2004.12.005
  19. C. H. Koo, C. Y. Bai, and Y. J. Luo, Mater. Chem. Phys. 86, 258 (2004). https://doi.org/10.1016/j.matchemphys.2004.01.004
  20. H. E. Otto, Phase Diagrams for Ceramists, M. K. Reser (Ed.) American Ceramic Society, p.140, Ohio (1964).
  21. E. N. Bunting, Phase Diagrams for Ceramists, M. K. Reser (Ed.) American Ceramic Society, p. 121, Ohio (1964).
  22. S. H. Cho, J. M. Hur, C. S. Seo, and S. W. Park, J. Alloys Comp. 452, 11 (2008). https://doi.org/10.1016/j.jallcom.2007.01.169
  23. A. M. Karlsson and A. G. Evans, Acta mater. 49, 1793 (2001). https://doi.org/10.1016/S1359-6454(01)00073-8
  24. S. H. Cho, C. S. Seo, G. S. Yoon, H. S. Park and S. W. Park, J. Kor. Inst. Met. & Mater. 44, 707 (2006).