Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.2.143

Effects of Land Cover Change on Summer Urban Heat Island Intensity and Heat Index in Seoul Metropolitan Area, Korea  

Hong, Seon-Ok (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Byon, Jae-Young (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Kim, Do-Hyeong (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Lee, Sang-Sam (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.31, no.2, 2021 , pp. 143-156 More about this Journal
Abstract
This study investigates the impacts of land cover change due to urbanization on the Urban Heat Island Intensity (UHII) and the Heat Index (HI) over the Seoul metropolitan area using the Unified Model (UM) with the Met Office Reading Urban Surface Exchange Scheme (MORUSES) during the heat wave from 16, July to 5, August 2018. Two simulations are performed with the late 1980s land-use (EXP1980) and the late 2000s land-use (EXP2000). EXP2000 is verified using Automatic Weather Station (AWS) data from 85 points in the study area, and observation sites are classified into two categories according to the urban fraction change over 20 years; Category A is 0.2 or less increase, and Category B is 0.2 or more increase. The 1.5-m temperature and relative humidity in Category B increase by up to 1.1℃ and decreased by 7% at 1900 LST and 2000 LST, respectively. This means that the effect of the urban fraction changes is higher at night. UHII increases by up to 0.3℃ in Category A and 1.3℃ in Category B at 1900 LST. Analysis of the surface energy balance shows that the heat store for a short time during the daytime and release at nighttime with upward sensible heat flux. As a result of the HI, there is no significant difference between the two experiments during the daytime, but it increases 1.6℃ in category B during the nighttime (2200 LST). The results indicate that the urbanization increase both UHII, and HI, but the times of maximum difference between EXP1980 and EXP2000 are different.
Keywords
Unified model; MORUSES; urban heat island intensity; heat index; land-use;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, D., and S.-K. Song, 2016: Analyzing the relationships between land cover type and sensible temperature in urban heat wave. J. Korea Planning Assoc., 51, 137-152, doi:10.17208/jkpa.2016.02.51.1.137 (in Korean with English abstract).   DOI
2 Lee, H.-J., K.-O. Lee, G.-M. Won, and H.-W. Lee, 2009: Application of the latest land use data for numerical simulation of urban thermal environment in the Daegu. J. Korean Soc. Atmos. Environ., 25, 196-210 (in Korean with English abstract).   DOI
3 Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357-397.   DOI
4 Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 546 pp.
5 Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010b: Implementation of a new urban energy budget scheme into MetUM. Part II: Validation against observations and model intercomparison. Q. J. R. Meteorol. Soc., 136, 1530-1542, doi:10.1002/qj.572.   DOI
6 Steadman, R. G., 1979: The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteor. Climatol., 18, 861-873.   DOI
7 Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc., 125, 1607-1636.   DOI
8 Basara, J. B., H. G. Basara, B. G. Illston, and K. C. Crawford, 2010: The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteorol., 2010, 230365, doi:10.1155/2010/230365.   DOI
9 UN, 2018: World Urbanization Prospects: The 2018 Revision. United Nations, 103 pp [Available online at https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf].
10 Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010a: Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations. Q. J. R. Meteorol. Soc., 136, 1514-1529, doi:10.1002/qj.668.   DOI
11 Best, M J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.   DOI
12 Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Q. J. R. Meteorol. Soc., 137, 1625-1640, doi:10.1002/qj.855.   DOI
13 Conti, S., P. Meli, G. Minelli, R. Solimini, V. Toccaceli, M. Vichi, C. Beltrano, and L. Perini, 2005: Epidemiologic study of mortality during the summer 2003 heat wave in Italy. Environ. Res., 98, 390-399.   DOI
14 Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782.   DOI
15 Best, M J., 2005: Representing urban areas within operational numerical weather prediction models. Bound.- Layer Meteor., 114, 91-109.   DOI
16 Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273-288, doi:10.1002/joc.2158.   DOI
17 Chen, F., X. Yang, and W. Zhu, 2014: WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res., 138, 364-377, doi:10.1016/j.atmosres.2013.12.005.   DOI
18 Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc., 122, 689-719.   DOI
19 Kim, Y.-H., and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor. Climatol., 41, 651-659.   DOI
20 Kanda, M., T. Kawai, M. Kanega, R. Morinaga, K. Narita, and A. Hagishima, 2005: A simple energy balance model for regular building arrays. Bound.-Layer Meteor., 116, 423-443.   DOI
21 Kim, J.-C., C.-B. Lee, T.-H. Cheon, and Y.-J. Jang, 2010: A study about the impact of atmospheric environmental changes by urban development on human health. J. Environ. Imp. Assess., 19, 15-28 (in Korean with English abstract).
22 Kim, H., H.-B. Seok, and Y.-K. Kim, 2014: A study on the change of the urban heat island structure in Busan metropolitan area, Korea. J. Environ. Sci. Int., 23, 1807-1820, doi:10.5322/JESI.2014.23.11.1807 (in Korean with English abstract).   DOI
23 Grimmond, C. S. B., and T. R. Oke, 1999: Heat storage in urban areas: local-scale observations and evaluation of a simple model. J. Appl. Meteor. Climatol., 38, 922-240.   DOI
24 Rizwan, A. M., L. Y. Dennis, and C. Liu, 2008: A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci., 20, 120-128.   DOI
25 Hong, S.-O., J.-Y. Byon, H. Park, Y.-G. Lee, B.-J. Kim, and J.-C. Ha, 2018: Sensitivity analysis of near surface air temperature to land cover change and urban parameterization scheme using Unified Model. Atmosphere, 28, 427-441, doi:10.14191/Atmos.2018.28.4.427 (in Korean with English abstract).   DOI
26 Kim, Y.-H., and J.-J. Baik, 2005: Spatial and temporal structure of the Urban Heat Island in Seoul. J. Appl. Meteor. Climatol., 44, 591-605.   DOI
27 Bhati, S., and M. Mohan, 2018: WRF-urban canopy model evaluation for the assessment of heat island and thermal comfort over an urban airshed in India under varying land use/land cover conditions. Geosci. Lett., 5, 27, doi:10.1186/s40562-018-0126-7.   DOI
28 Lee, C.-B., J.-C. Kim, and Y.-J. Jang, 2012: A study of Urban Heat Island in Chuncheon using WRF model and field measurements. J. Korean Soc. Atmos. Environ., 28, 119-130 (in Korean with English abstract).   DOI
29 Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187-3199.   DOI
30 Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: formulation and evaluation for Two cities. J. Appl. Meteor. Climatol., 47, 1038-1060.   DOI
31 Schoen, C., 2005: A new empirical model of the temperature-humidity index. J. Appl. Meteor. Climatol., 44, 1413-1420.   DOI
32 Stone, B., 2012: The city and the coming climate: Climate change in the places we live. Cambridge University Press, 206 pp.
33 Uejio, C. K., O. V. Wilhelmi, J. S. Golden, D. M. Mills, S. P. Gulino, and J. P. Samenow, 2011: Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place, 17, 498-507, doi:10.1016/j.healthplace.2010.12.005.   DOI
34 Yang, B., X. Yang, L. R. Leung, S. Zhong, Y. Qian, C. Zhao, F. Chen, Y. Zhang, and J. Qi, 2019: Modeling the impacts of urbanization on summer thermal comfort: The role of urban land use and anthropogenic Heat. J. Geophys. Rev. Atmos., 124, 6681-6697, doi: 10.1029/2018JD029829.   DOI
35 Kusaka, H., H. Kondo, Y, Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329-358.   DOI
36 Moon, Y.-S., and Y.-S. Koo, 2006: A study on examples applicable to numerical land cover map data for atmospheric environment fields in the metropolitan area of Seoul - Real time calculation of biogenic CO2 flux and VOC emission due to a geographical distribution of vegetable and analysis on sensitivity of air temperature and wind field within MM5 -. J. Korean Soc. Atmos. Environ., 22, 661-678 (in Korean with English abstract).
37 Unnikrishnan, C. K., B. Gharai, S. Mohandas, A. Mamgain, E. N. Rajagopal, G. R. Iyenger, and P. V. N. Rao, 2016: Recent changes on land use/land cover over Indian region and its impact on the weather prediction using Unified model. Atmos. Sci. Lett., 17, 294-300.   DOI
38 Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Q. J. R. Meteorol. Soc., 129, 1989-2010.   DOI
39 Zhou, X., and H. Chen, 2018: Impact of urbanizationrelated land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ., 635, 1467-1476, doi:10.1016/j.scitotenv.2018.04.091.   DOI
40 Oke, T. R., 1982: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc., 108, 1-24.   DOI
41 Hong, J.-W., J. Hong, S.-E. Lee, and J. Lee, 2013: Spatial distribution of Urban Heat Island based on local climate zone of automatic weather station in Seoul metropolitan area. Atmosphere, 23, 413-424, doi:10.14191/Atmos.2013.23.4.413 (in Korean with English abstract).   DOI
42 Grover, A., and R. B. Singh, 2015: Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): A comparative study of Delhi and Mumbai. Environments, 2, 125-138, doi:10.3390/environments2020125.   DOI
43 Hong, J.-W., J. Hong, E. E. Kwon, and D. K. Yoon, 2019: Temporal dynamics of urban heat island correlated with the socio-economic development over the past halfcentury in Seoul, Korea. Environ. Pollut., 254, 112934.   DOI