DOI QR코드

DOI QR Code

플래시라이트를 이용한 금속나노입자 기반 전극 및 금속유기골격체 합성 전략

Synthesis Strategy for Electrodes and Metal-Organic Frameworks based on Metal Nanoparticle using Flashlight

  • 임창용 (경북대학교 나노소재공학부) ;
  • 백새연 (경북대학교 나노소재공학부) ;
  • 박소연 (경북대학교 나노소재공학부) ;
  • 김하민 (경북대학교 나노소재공학부)
  • Yim, Changyong (School of Nano & Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Baek, Saeyeon (School of Nano & Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Park, Soyeon (School of Nano & Materials Science and Engineering, Kyungpook National University (KNU)) ;
  • Kim, Hamin (School of Nano & Materials Science and Engineering, Kyungpook National University (KNU))
  • 투고 : 2020.10.26
  • 심사 : 2020.11.05
  • 발행 : 2020.12.10

초록

Intensive pulsed light (IPL) 기술은 빛을 millisecond 단위의 짧은 시간에 상온, 상압 환경에서 대상 물질에 조사하여 에너지를 전달한다. 이렇게 단시간에 조사되는 특징을 가진 플래시라이트(flashlight)에 대한 관심의 증대로 IPL을 이용한 금속입자의 광소결 연구가 대표적으로 이루어져 왔으며, 최근에는 IPL을 다양한 물질 합성에 적용한 사례가 발표되고 있다. 본 총설 논문은 지금까지 연구되어 밝혀진 IPL을 활용한 다양한 물질 합성 전략들에 대한 것으로 IPL 기술을 이용한 물질 합성에 대한 이해를 증진시키고자 한다. 특히, 금속나노입자의 소결을 이용한 유연 전극제작 및 금속유기골격체(metal-organic framework, MOF) 합성을 다루었다. 전극제작의 핵심 요소인 전극의 산화 저항성과 전기전도도 향상을 위한 과정을 다루었고, 금속기판으로부터 금속유기골격체를 합성하는 과정을 설명하였다. 이를 향후 IPL을 이용한 전극 제작 및 물질 합성 응용에 관한 연구를 하는 연구자에게 이해하기 쉽게 설명하고자 하였다.

Intensive pulsed light (IPL) technique enables energy to be transferred to a target substance in a short time per millisecond at room temperature under an ambient atmosphere. Due to the growing interest in flashlights with excellent functionality among various technologies, light-sintering research on metal particles using IPL has been carried out representatively. Recently, examples of the application of IPL to various material synthesis have been reported. In the present article, various strategies using IPL including the manufacture of flexible electrodes and the synthesis of metal-organic frameworks were discussed. In particular, the process of improving oxidation resistance and electrical conductivity of electrodes, and also the metal-organic framework synthesis from metal surface were explained in detail. We envision that the review article can be of great help to researchers who investigate electrode manufacturing and material synthesis using IPL.

키워드

참고문헌

  1. C. Yim, Z. A. Kockerbeck, S. B. Jo, and S. S. Park, Hybrid copper-silver-graphene nanoplatelet conductive inks on PDMS for oxidation resistance under intensive pulsed light, ACS Appl. Mater. Interfaces, 9, 37160-37165 (2017). https://doi.org/10.1021/acsami.7b10748
  2. S. H. Park, W. H. Chung, and H. S. Kim, Temperature changes of copper nanoparticle ink during flash light sintering, J. Mater. Process Technol., 214, 2730-2738 (2014). https://doi.org/10.1016/j.jmatprotec.2014.06.007
  3. H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, Intense pulsed light sintering of copper nanoink for printed electronics, Appl. Phys., 97, 791-798 (2009). https://doi.org/10.1007/s00339-009-5360-6
  4. W. S. Han, J. M. Hong, H. S. Kim, and Y. W. Song., Multi-pulsed white light sintering of printed Cu nanoinks, Nanotechnology, 22, 395705 (2011). https://doi.org/10.1088/0957-4484/22/39/395705
  5. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour., Inkjet printing-process and its applications, Adv. Mater., 22, 673-685 (2010). https://doi.org/10.1002/adma.200901141
  6. J. Song and H. Zeng, Transparent electrodes printed with nanocrystal inks for flexible smart devices, Angew. Chem. Int. Ed., 54, 9760-9774 (2015). https://doi.org/10.1002/anie.201501233
  7. X. Xu, X. Luo, H. Zhuang, W. Li, and B. Zhang, Electroless silver coating on fine copper powder and its effects on oxidation resistance, Mater. Lett., 57, 3987-3991 (2003). https://doi.org/10.1016/S0167-577X(03)00252-0
  8. A. Yabuki and S. Tanaka, Oxidation behavior of copper nanoparticles at low temperature, Mater. Res. Bull., 46, 2323-2327 (2011). https://doi.org/10.1016/j.materresbull.2011.08.043
  9. C. Yim, A. Sandwell, and S. S. Park, Hybrid copper-silver conductive tracks for enhanced oxidation resistance under flash light sintering, ACS Appl. Mater. Interfaces, 8, 22369-22373 (2016). https://doi.org/10.1021/acsami.6b07826
  10. M. Grouchko, A. Kamyshny, and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem., 19, 3057-3062 (2009). https://doi.org/10.1039/b821327e
  11. J. Song, J. Li, J. Xu, and H. Zeng, Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics, Nano Lett., 14, 6298-6305 (2014). https://doi.org/10.1021/nl502647k
  12. H. J. Hwang, S. J. Joo, and H. S. Kim, Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering, ACS Appl. Mater. Interfaces, 7, 25413-25423 (2015). https://doi.org/10.1021/acsami.5b08112
  13. I. Kim, Y. Kim, K. Woo, E.-H. Ryu, K.-Y. Yon, G. Cao, and J. Moon, Synthesis of oxidation-resistant core-shell copper nanoparticles, RSC Adv., 3, 15169-15177 (2013). https://doi.org/10.1039/c3ra41480a
  14. C. Yim and S. Jeon, Direct synthesis of Cu-BDC frameworks on a quartz crystal microresonator and their application to studies of n-hexane adsorption, RSC Adv., 5, 67454-67458 (2015). https://doi.org/10.1039/C5RA11686D
  15. T. F. Baumann, Metal-organic frameworks: Literature survey and recommendation of potential sorbent materials, Lawrence Livermore National Laboratory, TR-430112, Doi:10.2172/1012427 (2011).
  16. D. Britt, D. Tranchemontagne, and O. M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases, Proc. Nat. Acad. Sci., 105, 11623-11627 (2008). https://doi.org/10.1073/pnas.0804900105
  17. O. Abuzalat, D. Wong, M. Elsayed, S. Park, and S. Kim, Sonochemical fabrication of Cu(II) and Zn(II) metal-organic framework films on metal substrates, Ultrason. Sonochem., 45, 180-188 (2018). https://doi.org/10.1016/j.ultsonch.2018.03.012
  18. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastre, Metal-organic frameworks-prospective industrial applications, J. Mater. Chem., 16, 626-636 (2005). https://doi.org/10.1039/b511962f
  19. N. Stock and S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., 112, 933-969 (2012). https://doi.org/10.1021/cr200304e
  20. H. Furukawa, M. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science, 329, 424-428 (2010). https://doi.org/10.1126/science.1192160
  21. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer and C. Woll, Step-by-step route for the synthesis of metal-organic frameworks, J. Am. Chem. Soc., 129, 15118-15119 (2007). https://doi.org/10.1021/ja076210u
  22. J. Li, S. Cheng, Q. Zhao, P. Long, and J. Dong, Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5, Int. J. Hydrogen Energ., 34, 1377-1382 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.048
  23. C. Yim, O. Abuzalat, M. Elsayed, S. Park, and S. Kim, Rapid fabrication of metal-organic framework films from metal substrates using intense pulsed light, Cryst. Growth Des., 18, 6946-6955 (2018). https://doi.org/10.1021/acs.cgd.8b01145
  24. A. Betard and R. A. Fischer, Metal-organic framework thin films: From fundamentals to applications, Chem. Rev., 112, 1055-1083 (2012). https://doi.org/10.1021/cr200167v
  25. W. Skorupa, T. Gebel, R. A. Yankov, S. Paul, W. Lerch, D. F. Downey and E. A. Arevalo, Advanced thermal processing of ultra-shallow implanted junctions using flash lamp annealing, J. Electrochem. Soc., 152, G436 (2005). https://doi.org/10.1149/1.1899268
  26. D. Reichel, Temperature Measurement during Millisecond Annealing, Ripple Pyrometry for Flash Lamp Annealers, 1st ed., 103-105, Springer, Germany (2016).
  27. S. Katayama and Y. Kawahito, Laser direct joining of metal and plastic, Scr. Mater., 59, 1247-1250 (2008). https://doi.org/10.1016/j.scriptamat.2008.08.026
  28. C. Yim, K. Greco, A. Sandwell, and S. S. Park, Eco-friendly and rapid fabrication method for producing polyethylene terephthalate (PET) mask using intensive pulsed light, Int. J. Pr. Eng. Man-gt., 4, 155-159 (2017).
  29. H. S. Lim, S. J. Kim, H. W. Jang, and J. A. Lim, Intense pulsed light for split-second structural development of nanomaterials, J. Mater. Chem. C, 5, 7142-7160 (2017). https://doi.org/10.1039/C7TC01848G
  30. A. Lopez-Delgado, E. Cano, J. M. Bastidas, and F. A. Lopez, A comparative study on copper corrosion originated by formic and acetic acid vapours, J. Mater. Sci., 36, 5203-5211 (2001). https://doi.org/10.1023/A:1012497912875
  31. D. M. Bastidas, V. M. L. Iglesia, E. Cano, S. Fajardo, and J. M. Bastidas, Kinetic study of formate compounds developed on copper in the presence of formic acid vapor, J. Electrochem. Soc., 155, C578 (2008). https://doi.org/10.1149/1.2988059
  32. D. Kang, J. Y. Kwon, H. Cho, J.-H. Sim, H. S. Hwang, C. S. Kim, Y. J. Kim, R. S. Ruoff, and H. S. Shin, Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers, ACS Nano., 6, 7763-7769 (2012). https://doi.org/10.1021/nn3017316
  33. M. Shtein, I. Pri-Bar, M. Varenik, and O. Regev., Characterization of graphene-nanoplatelets structure via thermogravimetry, Anal. Chem., 87, 4076-4080 (2015). https://doi.org/10.1021/acs.analchem.5b00228
  34. S. R. Ahrenholtz, C. C. Epley, and A. J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism, J. Am. Chem. Soc., 136, 2464-2472 (2014). https://doi.org/10.1021/ja410684q
  35. X. Zhang, Y. Liu, S. Li, L. Kong, H. Liu, Y. Li, W. Han, K. L. Yeung, W. Zhu, W. Yang, and J. Qiu, New membrane architecture with high performance: ZIF8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation, Chem. Mater., 26, 1975-1981 (2014). https://doi.org/10.1021/cm500269e
  36. C. Yim, M. Lee, W. Kim, S. Lee, G.-H. Kim, K. T. Kim, and S. Jeon, Adsorption and desorption characteristics of alcohol vapors on a nanoporous ZIF-8 film investigated using silicon microcantilevers, Chem. Commun., 51, 6168-6171 (2015). https://doi.org/10.1039/C5CC01315A
  37. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257, 887-898 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086