Browse > Article
http://dx.doi.org/10.14478/ace.2020.1089

Synthesis Strategy for Electrodes and Metal-Organic Frameworks based on Metal Nanoparticle using Flashlight  

Yim, Changyong (School of Nano & Materials Science and Engineering, Kyungpook National University (KNU))
Baek, Saeyeon (School of Nano & Materials Science and Engineering, Kyungpook National University (KNU))
Park, Soyeon (School of Nano & Materials Science and Engineering, Kyungpook National University (KNU))
Kim, Hamin (School of Nano & Materials Science and Engineering, Kyungpook National University (KNU))
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 591-595 More about this Journal
Abstract
Intensive pulsed light (IPL) technique enables energy to be transferred to a target substance in a short time per millisecond at room temperature under an ambient atmosphere. Due to the growing interest in flashlights with excellent functionality among various technologies, light-sintering research on metal particles using IPL has been carried out representatively. Recently, examples of the application of IPL to various material synthesis have been reported. In the present article, various strategies using IPL including the manufacture of flexible electrodes and the synthesis of metal-organic frameworks were discussed. In particular, the process of improving oxidation resistance and electrical conductivity of electrodes, and also the metal-organic framework synthesis from metal surface were explained in detail. We envision that the review article can be of great help to researchers who investigate electrode manufacturing and material synthesis using IPL.
Keywords
Intensive pulsed light (IPL); Flash light sintering; Conductive inks; Metal nanoparticles; Metal organic frameworks (MOFs);
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. M. Bastidas, V. M. L. Iglesia, E. Cano, S. Fajardo, and J. M. Bastidas, Kinetic study of formate compounds developed on copper in the presence of formic acid vapor, J. Electrochem. Soc., 155, C578 (2008).   DOI
2 D. Kang, J. Y. Kwon, H. Cho, J.-H. Sim, H. S. Hwang, C. S. Kim, Y. J. Kim, R. S. Ruoff, and H. S. Shin, Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers, ACS Nano., 6, 7763-7769 (2012).   DOI
3 M. Shtein, I. Pri-Bar, M. Varenik, and O. Regev., Characterization of graphene-nanoplatelets structure via thermogravimetry, Anal. Chem., 87, 4076-4080 (2015).   DOI
4 S. R. Ahrenholtz, C. C. Epley, and A. J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism, J. Am. Chem. Soc., 136, 2464-2472 (2014).   DOI
5 X. Zhang, Y. Liu, S. Li, L. Kong, H. Liu, Y. Li, W. Han, K. L. Yeung, W. Zhu, W. Yang, and J. Qiu, New membrane architecture with high performance: ZIF8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation, Chem. Mater., 26, 1975-1981 (2014).   DOI
6 C. Yim, M. Lee, W. Kim, S. Lee, G.-H. Kim, K. T. Kim, and S. Jeon, Adsorption and desorption characteristics of alcohol vapors on a nanoporous ZIF-8 film investigated using silicon microcantilevers, Chem. Commun., 51, 6168-6171 (2015).   DOI
7 M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci., 257, 887-898 (2010).   DOI
8 H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, Intense pulsed light sintering of copper nanoink for printed electronics, Appl. Phys., 97, 791-798 (2009).   DOI
9 C. Yim, Z. A. Kockerbeck, S. B. Jo, and S. S. Park, Hybrid copper-silver-graphene nanoplatelet conductive inks on PDMS for oxidation resistance under intensive pulsed light, ACS Appl. Mater. Interfaces, 9, 37160-37165 (2017).   DOI
10 S. H. Park, W. H. Chung, and H. S. Kim, Temperature changes of copper nanoparticle ink during flash light sintering, J. Mater. Process Technol., 214, 2730-2738 (2014).   DOI
11 W. S. Han, J. M. Hong, H. S. Kim, and Y. W. Song., Multi-pulsed white light sintering of printed Cu nanoinks, Nanotechnology, 22, 395705 (2011).   DOI
12 M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour., Inkjet printing-process and its applications, Adv. Mater., 22, 673-685 (2010).   DOI
13 J. Song and H. Zeng, Transparent electrodes printed with nanocrystal inks for flexible smart devices, Angew. Chem. Int. Ed., 54, 9760-9774 (2015).   DOI
14 X. Xu, X. Luo, H. Zhuang, W. Li, and B. Zhang, Electroless silver coating on fine copper powder and its effects on oxidation resistance, Mater. Lett., 57, 3987-3991 (2003).   DOI
15 A. Yabuki and S. Tanaka, Oxidation behavior of copper nanoparticles at low temperature, Mater. Res. Bull., 46, 2323-2327 (2011).   DOI
16 C. Yim, A. Sandwell, and S. S. Park, Hybrid copper-silver conductive tracks for enhanced oxidation resistance under flash light sintering, ACS Appl. Mater. Interfaces, 8, 22369-22373 (2016).   DOI
17 I. Kim, Y. Kim, K. Woo, E.-H. Ryu, K.-Y. Yon, G. Cao, and J. Moon, Synthesis of oxidation-resistant core-shell copper nanoparticles, RSC Adv., 3, 15169-15177 (2013).   DOI
18 M. Grouchko, A. Kamyshny, and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem., 19, 3057-3062 (2009).   DOI
19 J. Song, J. Li, J. Xu, and H. Zeng, Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics, Nano Lett., 14, 6298-6305 (2014).   DOI
20 H. J. Hwang, S. J. Joo, and H. S. Kim, Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering, ACS Appl. Mater. Interfaces, 7, 25413-25423 (2015).   DOI
21 C. Yim and S. Jeon, Direct synthesis of Cu-BDC frameworks on a quartz crystal microresonator and their application to studies of n-hexane adsorption, RSC Adv., 5, 67454-67458 (2015).   DOI
22 T. F. Baumann, Metal-organic frameworks: Literature survey and recommendation of potential sorbent materials, Lawrence Livermore National Laboratory, TR-430112, Doi:10.2172/1012427 (2011).
23 D. Britt, D. Tranchemontagne, and O. M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases, Proc. Nat. Acad. Sci., 105, 11623-11627 (2008).   DOI
24 O. Abuzalat, D. Wong, M. Elsayed, S. Park, and S. Kim, Sonochemical fabrication of Cu(II) and Zn(II) metal-organic framework films on metal substrates, Ultrason. Sonochem., 45, 180-188 (2018).   DOI
25 U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastre, Metal-organic frameworks-prospective industrial applications, J. Mater. Chem., 16, 626-636 (2005).   DOI
26 C. Yim, O. Abuzalat, M. Elsayed, S. Park, and S. Kim, Rapid fabrication of metal-organic framework films from metal substrates using intense pulsed light, Cryst. Growth Des., 18, 6946-6955 (2018).   DOI
27 N. Stock and S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev., 112, 933-969 (2012).   DOI
28 H. Furukawa, M. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science, 329, 424-428 (2010).   DOI
29 O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer and C. Woll, Step-by-step route for the synthesis of metal-organic frameworks, J. Am. Chem. Soc., 129, 15118-15119 (2007).   DOI
30 J. Li, S. Cheng, Q. Zhao, P. Long, and J. Dong, Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5, Int. J. Hydrogen Energ., 34, 1377-1382 (2009).   DOI
31 A. Betard and R. A. Fischer, Metal-organic framework thin films: From fundamentals to applications, Chem. Rev., 112, 1055-1083 (2012).   DOI
32 W. Skorupa, T. Gebel, R. A. Yankov, S. Paul, W. Lerch, D. F. Downey and E. A. Arevalo, Advanced thermal processing of ultra-shallow implanted junctions using flash lamp annealing, J. Electrochem. Soc., 152, G436 (2005).   DOI
33 D. Reichel, Temperature Measurement during Millisecond Annealing, Ripple Pyrometry for Flash Lamp Annealers, 1st ed., 103-105, Springer, Germany (2016).
34 S. Katayama and Y. Kawahito, Laser direct joining of metal and plastic, Scr. Mater., 59, 1247-1250 (2008).   DOI
35 C. Yim, K. Greco, A. Sandwell, and S. S. Park, Eco-friendly and rapid fabrication method for producing polyethylene terephthalate (PET) mask using intensive pulsed light, Int. J. Pr. Eng. Man-gt., 4, 155-159 (2017).
36 A. Lopez-Delgado, E. Cano, J. M. Bastidas, and F. A. Lopez, A comparative study on copper corrosion originated by formic and acetic acid vapours, J. Mater. Sci., 36, 5203-5211 (2001).   DOI
37 H. S. Lim, S. J. Kim, H. W. Jang, and J. A. Lim, Intense pulsed light for split-second structural development of nanomaterials, J. Mater. Chem. C, 5, 7142-7160 (2017).   DOI