Browse > Article

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt  

Cho, Soo-Haeng (Korea Atomic Energy Research Institute)
Kang, Dae-Seong (Korea Atomic Energy Research Institute)
Hong, Sun-Seok (Korea Atomic Energy Research Institute)
Hur, Jin-Mok (Korea Atomic Energy Research Institute)
Lee, Han-Soo (Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Metals and Materials / v.46, no.9, 2008 , pp. 577-584 More about this Journal
Abstract
The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.
Keywords
high temperature corrosion; structural material; molten salt;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mantyla, Corros. Sci. 46, 1311 (2004)   DOI   ScienceOn
2 J. G. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafane, V. M. Salinas-Bravo, and J. Porcayo-Calderon, Mater. Sci. Eng. A, 435-436, 258 (2006)   DOI   ScienceOn
3 H. Izuta and Y. Komura, J. Jpn. Inst. Met. 58, 1196 (1994)   DOI
4 G. C. Wood and F. H. Stott, Mater. Sci. Tech. 3, 519 (1987)   DOI
5 F. H. Stott, G. C. Wood and J. Stringer, Oxid. Met. 32, 113 (1989)
6 M. Skashita and N. Sato, Corros. Sci., 17, 473 (1977)
7 S. Mitsushima, N. Kamiya, and K. I. Ota, J. Electrochem. Soc. 137, 2713 (1990)   DOI
8 C. R. Crayton and Y. C. Lu, Corros. Sci., 29, 7 (1989)
9 Y. Harada, Jpn. Therm. Spraying Soc. 33, 128 (1996)
10 T. Ishitsuka, and K. Nose, Corros. Sci. 44, 247 (2002)   DOI   ScienceOn
11 S. H. Cho, C. S. Seo, G. S. Yoon, H. S. Park and S. W. Park, J. Kor. Inst. Met. & Mater. 44, 707 (2006)
12 Tz. Tzvetkoff, and J. Kolchakov, Mater. Chem. Phys. 87, 201 (2004)   DOI   ScienceOn
13 E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980)
14 S. H. Park, Y. D. Lee and Y. Y. Lee, J. Kor. Inst. Met. & Mater., 33, 1323 (1995)
15 S. Ling, T. A. Rahmel and R. Petkovic-Luton, Oxid. Met. 40, 180 (1993)
16 B. Zhu, and G. Lindbergh, Electrochim. Acta, 46, 2593 (2001)   DOI   ScienceOn
17 A. Ruh, and M. Spiegel, Corros. Sci. 48, 679 (2006)   DOI   ScienceOn
18 F. H. Stott and F. I. Wei, Mater. Sci. Tech., 5, 1140 (1989)   DOI
19 F. Colom, and A. Bodalo, Corros, Sci. 12, 73 (1972)
20 E. J. Karell, K. V. Gourishankar, J. L. Smith, L. S. Chow, and L. Redey, Nucl. Technol. 136, 342 (2001)   DOI
21 G. C. Wood, Corros. Sci. 2, 173 (1962)   DOI   ScienceOn
22 G. C. Allen and R. K. Wild, J. Electron. Spectroscopy 5, 409 (1974)   DOI   ScienceOn
23 B. P. Mohanty, and D. A. Shores, Corros. Sci. 46, 2893 (2004)   DOI   ScienceOn
24 J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell, and A. G. Raraz, Oxid. Met. 55, 1 (2001)   DOI   ScienceOn
25 R. A. Rapp, Corros. Sci. 44, 209 (2002)   DOI   ScienceOn