• Title/Summary/Keyword: Arnold equation

Search Result 14, Processing Time 0.034 seconds

Obstacle Avoidance Methods in the Chaotic Mobile Robot with Integrated some Chaos Equation

  • Bae, Young-Chul;Kim, Ju-Wan;Kim, Yi-Gon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.206-214
    • /
    • 2003
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in an Arnold equation or Chua's equation trajectory, the obstacle reflects the robot. We also show computer simulation results of Arnold equation and Chua's equation and random walk chaos trajectories with one or more Van der Pol obstacles and compare the coverage rates of each trajectory. We show that the Chua's equation is slightly more efficient in coverage rates when two robots are used, and the optimal number of robots in either the Arnold equation or the Chua's equation is also examined.

Obstacle Avoidance Method in the Chaotic Unmanned Aerial Vehicle (카오스 무인 비행체에서의 장애물 회피 방법)

  • Bae, Young-Chul;Kim, Yi-Gon;Kim, Chun-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.883-888
    • /
    • 2004
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos UAVs meet an obstacle in an Arnold equation, Chua's equation and hyper-chaos equation trajectory the obstacle reflects the UAV( Unmanned Aerial Vehicle).

Obstacle avoidance method in the UAV

  • Bae, Young-Chul;Kim, Chun-Suk;Kim, Yig-On
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.7-10
    • /
    • 2004
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos UAVs meet an obstacle in an Arnold equation or Chua's equation trajectory, the obstacle reflects the UAV

  • PDF

Target searching method in the UAV

  • Bae, Young-Chul;Kim, Chun-Suk;Kim, Yi-Gon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, we propose a method to target searching method that have unstable limit cycles in a chaos trajectory surface. We assume all targets in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle When a chaos UAV meet the target in the Arnold equation, Chua's equation trajectory, the target absorptive the UAV

  • PDF

A Chaotic Underwater Robot (카오스 수중 로봇)

  • Kim, Chun-Suk;Bae, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.937-941
    • /
    • 2005
  • In this paper, we propose a chaotic underwater robots that have unstable limit cycles in a chaos trajectory surface with Arnold equation, Chua's equation. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Arnold equation and Chua's equation chaos trajectories with one or more Van der Pol obstacles

  • PDF

chaotic behavior analysis in the mobile robot : the case of Arnold equation

  • Kim, Youngchul;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.110-113
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. In the obstacle, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

  • PDF

Chaotic Behavior Analysis in the Several Arnold Chaos Mobile Robot with Obstacles

  • Bae, Young-Chul;Kim, Yi-Gon;Mathis Tinduk;Koo, Young-Duk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.123-127
    • /
    • 2004
  • In this paper, we propose that the chaotic behavior analysis in the several Arnold chaos mobile robot of embedding some chaotic such as Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle. We consider that there are two type of obstacle, one is fixed obstacle and the other is hidden obstacle which have an unstable limit cycle. In the hidden obstacles case, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

  • PDF

Chaotic behavior analysis in the mobile robot of embedding some chaotic equation with obstacle

  • Bae, Youngchul;Kim, Juwan;Kim, Yigon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.729-736
    • /
    • 2003
  • In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding some chaotic such as Chua`s equation, Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent In the mobile robot with obstacle. We consider that there are two type of obstacle, one is fixed obstacle and the other is VDP obstacle which have an unstable limit cycle. In the VDP obstacles case, we only assume that all obstacles in the chaos trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

A study on Synchronization method for Mutual Cooperative Control in the Chaotic UAV

  • Bae Young-Chul;Kim Chun-Suk;Koo Young-Duk
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 2006
  • In this paper, we propose to synchronization method for mutual cooperative control method that have unstable limit cycles in a chaos trajectory surface in the chaotic UAVs. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Arnold equation, Chua's equation trajectories with one or more Van der Pol as a obstacles. We proposed and verified the results of the method to make the embedding chaotic UAV to synchronization with the chaotic trajectory in any plane.

Chaotic Behaviour Analysis for Chaotic Mobile Robot (카오스 이동 로봇에서의 카오스 거동 해석)

  • Bae Young-chul;Kim Chun-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1410-1417
    • /
    • 2004
  • In this paper, we propose that the chaotic behavior analysis in the chaotic mobile robot embedding Arnold, equation, Chua's equation and hyper-chaos equation. In order to analysis of chaotic behavior in the mobile robot, we apply not only qualitative analysis such as time-series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent in the mobile robot with obstacle.