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Abstract

In this paper, we propose that the chaotic behavior analysis in the mobile robot of embedding some chaotic such as Chua’s
equation, Arnold equation with obstacle. In order to analysis of chaotic behavior in the mobile robot, we apply not only
qualitative analysis such as time—series, embedding phase plane, but also quantitative analysis such as Lyapunov exponent
in the mobile robot with obstacle. We consider that there are two type of obstacle, one is fixed obstacle and the other is
VDP obstacle which have an unstable limit cycle. In the VDP obstacles case, we only assume that all obstacles in the chaos
trajectory surface in which robot workspace has an unstable limit cycle with Van der Pol equation.

Key words : Chaos, Arnold equation, mobile robot, Lyapunov Exponent, Chua’s equation

1. Introduction

Chaos theory has been drawing a great deal of
attention in the scientific community for almost two
decades. Remarkable research efforts have been spent
in recent years, trying to export concepts from Physics
and Mathematics into the real world engineering
applications. Applications of chaos are being actively
studied in such areas as chaos control [1—2], chaos
synchronization and secure/crypto communication [3—
71, Chemistry [8], Biology [9], and robots and their
related themes [10].

Recently, Nakamura, Y. et al [10] proposed a chaotic
mobile robot, where a mobile robot is equipped with a
controller that ensures chaotic motion and the
dynamics of the mobile robot is represented by Arnold
equation. They applied obstacle with chaotic trajectory,
but they have not mentioned about the chaotic behavior
except Lyapunov exponent.

In this paper, we propose that the chaotic behavior
analysis in the mobile robot, in which the Arnold
equation and Chua’s equation are embedded, and which
have obstacle. In order to analysis of chaotic behavior
in the mobile robot, we apply not only qualitative
analysis such as time—series, embedding phase plane,
but also quantitative analysis such as Lyapunov
exponent in the mobile robot with obstacle. In order to
avoid obstacles, we assume that all obstacles in the
chaos trajectory surface have an unstable limit cycle of
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Van der Pol equation. When chaos robots meet
obstacles among the arbitrary wondering chaos
trajectory with chaos circuit equation such as Chua’s
equation, Arnlod equation, obstacles pull out the chaos
robots out of chaos trajectory because obstacles have
unstable limit cycle with Van der Pol equation.

2. Chaotic Mobile Robot embedding Chaos
Equation

2.1 Mobile Robot
As the mathematical model of mobile robots, we

assume a two— wheeled mobile robot as shown in Fig.
1.

X

Fig. 1. Two—wheeled mobile robot

Let the linear velocity of the robot v [m/s] and
angular velocity olrad/s] be the input to the system.
The state equation of the four—wheeled mobile robot is
written as follows:

729



HX| & NSALESE =241 2003, Vol. 13, No. 6

X cosd 0

y1=|sin@ 0 (v] ¢))
. w

17} 0 1

where (x,y) is the position of the robot and # is the
angle of the robot.

2.2 Some Chaos Equations

In order to generate chaotic motions for the mobile
robot, we apply some chaos equations such as an
Arnold equation or Chua’s equation.

1) Arnold equation [10]
We define the Arnold equation as follows:
X, = Asinx; + Ccosx,
X, = Bsinx, + Acosx, (2)

X, =Csinx, + Beosx,

where A, B, C are constants. The Arnold equation
describes a steady solution to the three—dimensional
(3D) Euler equation
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which express the behaviors of noncompressive
perfect fluids on a 3D torus space. (x x,x,) and (v,v,v,)
denote the position and velocity of particle and p, and
(£,£.5,) and p denote the pressure, external force,
and density, respectively. It is known that the Arnold
equation shows periodic motion when one of the
constant, for example €, is O or small and shows
chaotic motion when ¢ is large([14].

2) Chua’s Circuit Equation (2—Double Scroll)

Chua’s circuit is one of the simplest physical models
that has been widely investigated by mathematical,
numerical and experimental methods. One of the main
attractions of Chua’s circuit is that it can be easily built
with less than a dozen standard circuit components, and
has often been referred to as the “poor man’s chaos
generator.” Since the Chua’s circuit is endowed with an
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Fig. 2. (a) Chua circuit, (b) nonlinear resistor

unusually rich repertoire of nonlinear dynamical
phenomena, it has become a universal paradigm for
chaos. The Chua’s circuit and their nonlinear resister
are shown on Fig. 2(a), 2(b) respectively.

We can derive the state equation of Chua’s circuit
following as from Fig. 2(a) and 2(b) and then we also
can get the phase plane looks like Fig. 3

X =a(x, - g(x))
X =X =X, X (5

Xy == px,

where
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Fig. 3. Phase plane of Chua’s circuit

2.3 Embedding of Chaos circuit in the Robot

In order to embed the chaos equation into the mobile
robot, we define and use the Arnold equation and
Chua’s circuit equation as follows.

1) Arnold equation
We define and use the following state variables:

X, =Dy+Ccosx,
%, =Dx+ Bsinx, 6)

% =0

where B, C, and D are constant.
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Substituting (1) into (2), we obtain a state equation
on %, %,and i, as follows:
X, =Dv+Ccosx,
%, =Dv+Bsinx, (7
X, =w
We now design the inputs as follows [10]:

v=A/D
w=Csinx, + Beosx,

®

Finally, we can get the state equation of the mobile
robot as follows:
x, = Asin x; + Ccos x,
X, = Bsinx, + Acosx,
X, = Csinx, + Becosx, 9
x=Vcosx,

y=Vsinx,

Equation (9) includes the Arnold equation. Fig. 4
shows the phase plane of the gradients of the mobile
robot of Arnold equation in x—y plane and in 3D plane
respectively.

In the Nakamura et al.[10], they used phase plane
components such as (x,y).(y.z).(z.x) in the equation (9),
but we used gradients of each variables such as,
?1, ‘?—% for convenience in computation of chaotic
poatlth ccgf tttle mobile robot .
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Fig. 4. Phase plane of gradient (@. @525) of Arnold

equation in x—y plane and in 3D (a\t/= 1& A(Ll, B=0.5,
C=0.5)
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Fig. 5. Trajectory of the mobile robot of Arnold
equation, when there is no boundary.

Fig. 5 shows the trajectory of mobile robot of Arnold
equation, when there is no boundary. In Fig. 5, we
recognize intuitionally that the mobile robot trajectories
with the Arnold equation have a chaotic motion.

2) Chua’s Equation

Using the methods explained in equations (6)—(9),
we can obtain equation (10) with Chua’s equation
embedded in the mobile robot.

).(1 =a(xz —g(xl))
X, =X —X, +X;
X, =—px, 6%0))

x=Vcos x,

y=Vsinx,

Using equation (10), we obtain the embedding chaos
robot trajectories with Chua’s equation. Fig. 6 shows
the phase plane of the gradients of Chua’s equation,
which is used for the computational convenience as in
the Chua’s equation.
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Fig. 6. Phase portrait of gradient Vector(—g—j, %%)

in Chua’s circuit.

Fig. 7 shows the trajectory of mobile robot of Chua’s
equation, when there is no boundary. In Fig. 7, we
recognize intuitionally that the mobile robot trajectories
with the Chua’s equation have a chaotic motion.
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Fig. 7. Trajectory of the mobile robot of Chua’s
equation, when there is no boundary
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2.4 Mirror Mapping.

Basically, equation (9) and (10) are assumed that the
mobile robot moves in a smooth state space without
boundary. However, real robot movies in space with
boundary like walls or surfaces of obstacles. To avoid a
boundary or obstacle, we consider mirror mapping
when the robot approach walls or obstacles using the
Eq. (11) and (12). Whenever the robot approaches a
wall or obstacle, we calculated the robot new position

A=(cos<9 sin® J an

sinfd ~cosé

(12)

2

A=1/1em |1 2m
2m —-1+m?

We can use equation (11) when slope is infinitive

such as #=90and also use equation (12) when slope is

not infinitive. In Fig. 8, we can see the mirror mapping

diagram.

Fig. 8. Mirror mapping

3. The Chaotic Behavior of embedding
Chaos Robot with obstacle avoidance
behavior

We investigated by numerical analysis whether the
mobile robot with the proposed controller actually
behaves in a chaotic manner. In order to computer
simulation, we applied mirror mapping and have shown
it in Fig. 9. The parameters and initial conditions are
used as follows:

Arnold equation case
Coefficients:

v=1[m/s], A= 0.5[1/s], B=0.25{1/s], C=0.25[1/s]

Initial conditions:

Chua‘s equation case
Coefficients:

a=9, B=14286

732

Initial conditions:

x =4, x,=35 x=0, x=0, y=0

3.1 Fixed obstacle

In this section, we will study avoidance behavior of a
chaos trajectory with obstacle mapping, relying on the
Arnold equation and Chua’s equation respectively.

Fig. 9 and 10 show that a chaos robot trajectories to
which mirror mapping was applied in the outer wall and
in the inner obstacles as well using Eq. (11) and (12),
relying on Arnold equation (9) and Chua’s equation
(10). The chaos robot has two fixed obstacles, and we
can confirm that the robot adequately avoided the fixed
obstacles in the Arnold and Chua’s chaos robot
trajectories.

Fig. 9. Arnold equation trajectories of chaos robot
with obstacle

Fig.10. Chua’s equation trajectories of chaos robot
with obstacles

3.2 VDP equation as a obstacle

In this section, we will discuss the mobile robot’s
avoidance of Van der Pol(VDP) equation obstacles. We
assume the obstacle has a VDP equation with an
unstable limit cycle, because in this condition, the
mobile robot can not move close to the obstacle and the
obstacle is avoided.

1) VDP equation as an obstacle
In order to represent an obstacle of the mobile robot,
we employ the VDP, which is written as follows:
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xX=y

. ) 13
y=({1-y)y-x

From equation (13), we can get the following limit
cycle as shown in Fig. 11.

Fig. 11. Limit cycle of VDP

2) Magnitude of Distracting force from the obstacle
We consider the magnitude of distracting force from
the obstacle as follows:

0.325

" 02D, + )T (14)

where D, is the distance between each effective
obstacle and the mobile robot.

We can also calculate the VDP obstacle direction
vector as follows:

X g X, — Y
Vo 0.5(0=(y, = »)* Ny, = »)~(x, - x)
15)

where (x,,y,) are the coordinates of the center point
of each obstacle. Then we can calculate the magnitude
of the VDP direction vector (L), the magnitude of the
moving vector of the virtual robot (I) and the enlarged
coordinates (I/2L) of the magnitude of the virtual robot
in VDP(x,, y,) as follows!

L=3(Z," +7a")

I={x>+y2) (16)
LRI -yl
WELYNT

Finally, we can get the Total Distraction Vector
(TDV) as shown by the following equation.

< D, D,
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Using equations (14)—(17), we can calculate the
avoidance method of the obstacle in the Arnold
equation and Chua’s equation trajectories with one or
more VDP obstacles.

In Fig. 12, the computer simulation result shows that
the chaos robot has two robots and a total of 5 VDP
obstacles, including two VDP obstacles at the origin in
the Arnold equation trajectories. We can see that the
robot sufficiently avoided the obstacles in the Arnold
equation trajectories.

Fig. 12. Computer simulation result of obstacle
avoidance with 2 robots and 5 obstacles in Arnold
equation trajectories.

In Fig. 13, the computer simulation result shows that
the chaos robot surface has two robots and total of 5
VDP obstacles, including 2 VDP obstacles at the origin
in the Chua’s equation trajectory. We can see that the
robot sufficiently avoided the obstacles in the Chua’s
equation trajectory.

Fig. 13. Computer simulation result of obstacle
avoidance with 2 robots and 5 obstacles in Chua’s
equation trajectory.

4. Chaotic behavior analysis in the Mobile
Robot

To analysis of chaotic behavior in the mobile robot,
we investigated the chaotic characteristics from the
mobile' robot trajectories data. Firstly, we applied
embedding method as a qualitative analysis and then we
get the reconstruction phase plane from the one
dimensional mobile robot trajectories data. Second, we
calculated Lyapunov exponent as quantitative analysis.

733



HX| ¥ XsAAHES =FX 2003, Vol. 13, No. 6

4.1 Embedding method

In order to reconstruct phase plane from data of
robot’s single variable, we applied an embedding
method proposed by Takens [12]. The embedding
method is referring to the process in which a
representation of the attractor can be constructed from
a set of scalar time-series. The form of such
reconstructed state is given as follows:

X, =[x(0),x(t + 7)o X(t + (m—1)7] (18)

Where x(z) is a robot trajectory data, r is a delay
time, and m is an embedding dimension. It is significant
factor to get reasonable embedding phase plane. In
chaos mobile case, we choose r is 400 using an auto—
correlation time and m is chosen 5 because nearest
false neighbor disappears in that dimension. Fig. 14 and
Fig. 15 shows time -series of embedding Arnold
equation chaos robot from equation (9) and Chua’s
equation robot from equation ion (10)
receptively.

chaos
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Fig.15. Chua’s chaos robot time—series

4.2 Qualitative Analysis

With reconstructed state, the qualitative chaotic
degree of chaotic robot path is analyzed in this section
using embedding phase plane. Fig. 16 shows phase
plane of these embedding state which are originally
robot paths when robot has a (a) no obstacle, (b) fixed
obstacle, and (c) VDP obstacle from the Arnold
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embedding chaos robot. Fig. 17 shows phase plane of
these embedding state which are originally robot paths
when robot has a (a) no obstacle, (b) fixed obstacle,
and (¢) VDP obstacle from the Chua’s embedding chaos
robot.
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Fig. 16. Reconstructed phase plane (a) no obstacle,
(b) fixed obstacle, and (c) VDP obstacle.
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Fig. 17. Reconstructed phase plane (a) no obstacle,
(b) fixed obstacle, and (c) VDP obstacle.

In Fig. 16 and 17, we can recognize that
reconstructed robot path from one dimensional mobile
trajectories are very complicated signal seems like
chaos signal. We can also confirmed that when the
robots has a obstacle, reconstructed phase planes are
more complicated compare with no obstacle.

4.3. Quantiative Analysis

In this section, we evaluate Lyapunov spectrum [13]
in the mobile robot as a quantitative chaos analysis and
shows Arnold chaos robot in Fig. 18 and also shows
Chua’s chaos robot in Fig. 19. Generally speaking,
when the largest Lyapunov exponent more than zero
we can say chaotic motion and less than or equal zero,
we say periodic motion. In Fig. 18 and 19, we can
confirm that reconstructed phase planes are chaotic
motion because there are largest Lyapunov exponents
more than zero.

Lyapunay spectrurn of Amoid equation without obstacle
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Fig. 18. Lyapunov spectrum of mobile robot (a)
without obstacle, (b) with obstacle
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Fig. 19. Lyapunov spectrum of mobile robot (a)
without obstacle, (b) with obstacle

5. Conclusion

In this paper, we propose that the chaotic behavior
analysis in the mobile robot of embedding Arnold
equation and Chua’s equation with obstacle. In order to
analysis of chaotic behavior in the mobile robot, we
apply not only qualitative analysis such as time—series,
embedding phase plane, but also quantitative analysis
such as Lyapunov exponent in the mobile robot with
obstacle. In the obstacle, we only assume that all
obstacles in the chaos trajectory surface in which robot
workspace has an unstable limit cycle with Van der Pol
equation.
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