• Title/Summary/Keyword: Area array

Search Result 720, Processing Time 0.031 seconds

Circularly Rotated Array for Dual Polarized Applicator in Superficial Hyperthermia System

  • Kim, Ki Joon;Choi, Woo Cheol;Yoon, Young Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.20-25
    • /
    • 2015
  • A circularly rotated array for a dual polarized applicator in a superficial hyperthermia system is proposed. The applicator has a wider effective treatment area due to the $180^{\circ}$ phase shift. The dual polarized circularly rotated array (DPCRA) suppresses overheating at the center of the array and helps evenly distribute the heat. This array provides a more effective treatment area than a lattice array when a $2{\times}2$ dual polarized array is fitted to the treatment area. The treatment area is 71.5% of the aperture, whereas the effective treatment areas of the $2{\times}2$ dual polarized lattice array (DPLA) and the single polarized array (SPA) are 57.2% and 38.6% of the same aperture, respectively. The measurement matches the simulation results without blood circulation effects. In a $2{\times}2$ array applicator, the proposed DPCRA has more heat uniformity than the DLA and the SPA.

A Systolic Array for High-Speed Computing of Full Search Block Matching Algorithm

  • Jung, Soon-Ho;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1275-1286
    • /
    • 2011
  • This paper proposes a high speed systolic array architecture for full search block matching algorithm (FBMA). The pixels of the search area for a reference block are input only one time to find the matched candidate block and reused to compute the sum of absolute difference (SAD) for the adjacent candidate blocks. Each row of designed 2-dimensional systolic array compares the reference block with the adjacent blocks of the same row in search area. The lower rows of the designed array get the pixels from the upper row and compute the SAD with reusing the overlapped pixels of the candidate blocks within same column of the search area. This designed array has no data broadcasting and global paths. The comparison with existing architectures shows that this array is superior in terms of throughput through it requires a little more hardware.

A Study on the Beam forming method suitable receive area shape using planar array antenna (평면 배열 안테나를 이용한 수선 지역 형태에 적합한 빔 형성 방법에 관한 연구)

  • 이봉수;장재철;안도희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2003
  • In this paper, arranged the isotropic point source of N number with the structure which is identical with the receive area. And against the array structure which has the radiation pattern which is identical with the receive area it researched. The arranged the element space flees grating lobe and in order to set the characteristic of optimum with half-wave equally space it selects. After inducing the array factor of each array structure, it calculated a radiation pattern. As a result of, the radiation pattern of the each Planar array antenna with structure of the receive area was similar and the possibility of getting an beam characteristic it was.

  • PDF

Low-area Bit-parallel Systolic Array for Multiplication and Square over Finite Fields

  • Kim, Keewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2020
  • In this paper, we derive a common computational part in an algorithm that can simultaneously perform multiplication and square over finite fields, and propose a low-area bit-parallel systolic array that reduces hardware through sequential processing. The proposed systolic array has less space and area-time (AT) complexity than the existing related arrays. In detail, the proposed systolic array saves about 48% and 44% of Choi-Lee and Kim-Kim's systolic arrays in terms of area complexity, and about 74% and 44% in AT complexity. Therefore, the proposed systolic array is suitable for VLSI implementation and can be applied as a basic component in hardware constrained environment such as IoT.

A Frequency Resource Assignment Algorithm for FH Radio Using Isotropic Multi Dimension Array (등방 다차원 배열을 이용한 FH 무전기용 주파수 자원 할당 알고리즘)

  • Lee, Seong-Min;Han, Joo-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2006
  • To reduce the interferences between the radio equipments which are operated in frequency hopping mode, the frequency resource should be assigned to each equipment without overlapping when several groups of radio equipments operate in the same area. If the radio equipments are in a different area, the partial frequency overlaying can be permitted. From the isotropic multi-dimensional array, several frequency assignment tables can be extracted for a same area. Also several tables can be extracted for different areas. Since there can be no overlapped frequencies between the tables for the same area, no interference between the radio equipments in an area is guaranteed. The frequencies overlapped between 2 tables for 2 different areas are pre-planed as required. The interference performance in frequency hopping radio can be controlled as desired using the proposed Frequency Resource Assignment Algorithm using Isotropic multi-dimensional Array.

Underfill Technology (언더필 기술)

    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.214-225
    • /
    • 2003
  • Trends in microelectronics packages such as low cost, miniaturization, high performance, and high reliability made area array interconnecting technologies including flip chip, CSP (Chip Scale Package) and BGA (Ball Grid Array) mainstream technologies. Underfill technology is used for the reliability of the area array technologies, thus electronics packaging industry regards it as very important technology In this paper, the underfill technology is reviewed and the recent advances in the underfill technology including new processes and materials are introduced. These includes reworkable underfills, no-flow underfills, molded underfills and wafer - level - applied underfills.

Children's Strategies for Measurement Estimation of Rectangular Covering Tasks (직사각형 덮기 과제를 해결하면서 나타난 초등학생의 어림 측정 전략)

  • Lee, Jong-Euk
    • The Mathematical Education
    • /
    • v.49 no.3
    • /
    • pp.375-387
    • /
    • 2010
  • The focus of this article is the strategies young children use to solve rectangular covering tasks before they have been taught area measurement. seventy nine children from Grade 1 to 4 were observed while they solved various array-based tasks, and their drawing and explanation were collected and analyzed. Children's solution strategies were classified into incomplete covering, inadequate array, array constructed from moveable unit, measurement of one dimension, measurement of two dimension, and calculation. Implications for the learning of area measurement are addressed.

Design of 8 Channel Insertional pTx Array Coil for 3T Body Imaging (8 채널 삽입형 3T Body pTx Array 코일 설계)

  • Kim, Young Beom;Ryu, Yeunchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.546-550
    • /
    • 2014
  • In this research, we report all the elements are placed in the space above the patient table as a transmit coil to give optimized B1+ field for the body object. Through the simulations, we compared upper-and-lower parts combined 8 channel Tx array to upper only 8 channel Tx array and showed the utilities of B1+ shimming in multi-channel Tx body imaging at 3T. Half-cylinder shaped upper array shows weak B1+ field area around back of patient without B1+ shimming. After B1+ shimming, highly induced SAR places occurred in the arm region due to the close distance to the both end elements which were driven by very high RF current to enhance B1+ in back area. The proposed upper and lower combined array provides an enhanced homogeneous B1+ field in large ROI imaging as a result of shimming over the body size phantom. Through this research we proved the usefulness of the proposed insertional upper and lower parts combined transmit array for 3T body imaging.

Double staining method for array tomography using scanning electron microscopy

  • Eunjin Kim;Jiyoung Lee;Seulgi Noh;Ohkyung Kwon;Ji Young Mun
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.14.1-14.6
    • /
    • 2020
  • Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast. Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.

Fast Algorithm to Generate the Array of Elementa 1 Image in Integral Imaging Systems (집적영상 기술에서의 요소영상 배열을 생성하기 위한 Fast 알고리즘)

  • Kwon, Young-Man;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.898-904
    • /
    • 2008
  • In this paper, we propose a fast algorithm to generate the array of elemental image in a computer generated integral imaging system. It generates the array of elemental image using depth information, needs less computing time to produce the result by using the concept of boundary area and computing the voxel within boundary area. By comparing the computing time of proposed algorithm with that of the existing algorithm theoretically and experimently, we proved the efficiency of this algorithm.