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A Systolic Array for High-Speed Computing of

Full Search Block Matching Algor ithm

Soon Ho Jung†, Chong Ho Woo††

ABSTRACT

This paper proposes a high speed systolic array architecture for full search block matching algorithm

(FBMA). The pixels of the search area for a reference block are input only one time to find the matched

candidate block and reused to compute the sum of absolute difference (SAD) for the adjacent candidate

blocks. Each row of designed 2-dimensional systolic array compares the reference block with the adjacent

blocks of the same row in search area. The lower rows of the designed array get the pixels from the

upper row and compute the SAD with reusing the overlapped pixels of the candidate blocks within same

column of the search area. This designed array has no data broadcasting and global paths. The comparison

with existing architectures shows that this array is superior in terms of throughput through it requires

a little more hardware.
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1. INTRODUCTION

Applications such as video telephone, video-

conference system, and high definition TV

(HDTV), etc. require huge raw data for various

digital image processing. A video compression al-

gorithm (in the image processing such as MPEG)

uses discrete cosine transform and motion com-

pensation to remove redundancies [1,2]. We need

motion estimation for the implementation of motion

compensation. Although, many algorithms are pro-

posed for it, FBMA is simple and widely used be-

cause it provides better image quality of images.

The FBMA gives an optimal performance for

blockwise motion estimation, but it requires a very

massive computational overhead for real time

processing [3-13]. Various VLSI array archi-

tectures are proposed in the literature to help solve

this drawback. In these years some FPGA im-

plementations are addressed [14,15].

Komarek and Pirsch[5] discussed the systolic

array architecture for FBMA. This suffers from

the low utilization and needs complex adders for

accumulating the results in each column. Pan et

al.'s architecture [7] uses two-stage BMA. Yea

and Hu [8] consider a VLSI array architecture,

which makes use of the overlapping feature in

some parts of the search ranges to the adjacent

reference blocks. Thus, this array shows the re-

duced number of input/output pins and an im-

provement in the computation speed. It requires

broadcasting for propagating the input data to the

processing elements and needs the global paths.

Lee and Lu [9] use a semi-systolic array that con-

tains two types of communication link, global con-

nections for the search data and local connections

for the partial sum. Lai et al [10,11] propose a 1-di-
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Fig. 1. The concept of full search block matching [6].

mensional processing element array and two da-

ta-interlacing shift register arrays with data reuse.

The current block pixels are sequentially inputted

and broadcasted to all processing elements. Notion

of data broadcasting and the global paths work

against the premise of VLSI array as both limit

the performance. Kittitornkun and Hu [12] propose

a frame-level pipeline operation for the FBMA

without using data broadcasting mechanism. But

it requires long spiral interconnections and pipeline

registers for delaying of input data. These high

performance architectures can be used only under

the condition of search range p = N/2 [8, 10-12].

This paper proposes a high-speed systolic array

design for FBMA that does not require data broad-

casting and global paths. We obtain the data de-

pendence of FBMA for a reference block. The can-

didate blocks of search range in the algorithm are

overlapped in row and column. The overlapped

pixels are input once and are reused for adjacent

candidate blocks. From the data dependence graph,

we get a 2-dimensional VLSI array having time

and space localities generated by the mapping

methodology of systolic array. A row of the de-

signed array computes the SADs for the candidate

blocks with reusing of the pixels within the same

row of the search area. Each row of the array gets

the search area pixels from the nodes in the upper

row, so it can compute the SADs with reusing of

the pixels in the same column in the search area.

As the pipeline period in the designed array is 2,

we partition the processing elements of array into

two groups and merge corresponding elements

from each group to help improve the utilization of

array processor. Assuming the reference block size

of N ´ N and the maximum search range of p, the
designed array takes (N2+2(p+1)N+6p) and

(3N+4p-1) clock cycles to obtain the motion vec-

tors of the first and other reference block,

respectively. There are (N 2/2+1)(2p+1) processing

elements with (N+2p) input ports in the array. The

designed 2-dimensional systolic array has many

processing elements, but shows a higher computa-

tion speed as compared to the existing arrays.

2. FULL SEARCH BLOCK MATCHING

ALGORITHM

The block matching algorithm estimates the

amount of motion on a block basis between two

successive frames as Fig. 1 [6]. The current frame

is divided into a number of N ´ N blocks. This
block is called as the reference block. Each motion

vector (MV) is the displacement from the reference

block in the current frame to a matching candidate

block of search area in the previous frame. The

search area in the previous frame is composed of

the pixels located in p apart from the coordinates

of the reference block, where p is the maximum

search range.

The FBMA is the method that exhaustively

searches for matching a reference block to the en-

tire candidate blocks in the search area. A block

is declared as the best matched block, if there ex-

ists a minimum difference between a reference and

candidate blocks in the search area. The motion

vector gives the difference of index between the

selected candidate and reference blocks, and is as

(1):
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where x(i, j) is the luminance value of the reference

block, y(i, j) is the luminance value of the candidate

block, when the reference block size is N ´ N, and
the maximum search range is p. We use sum of

absolute difference (SAD) as the matching crite-

rion because it provides a simple measure.

The FBMA for a reference block is described

as Fig. 2, where the reference block size is N ´ N,
and the maximum search range is p. The indices

m and n designate the coordinates of the candidate

block. We denote the indices m and n as 0 to 2p

instead of –p to p. The index k is a 1-dimensional

index for the pixels in the reference block. So index

k can denote i´ N+j, where indices i and j are coor-
dinates of the pixel in the reference block as given

in (1). The variable Dmin is the minimum SAD(m,n)

for a reference block for which the index (m,n) is

selected as the motion vector MV.

for (m=0 ; m<=2p ; m++)
   for (n=0 ; n<=2p ; n++) 
      for (k=0 ; k<=N´ N-1 ; k++)
          SAD(m,n) = SAD(m,n)+ | x(k/N, k%N) - 

y(m+k/N ,n+k%N) |
      end for
      if (Dmin < SAD(m,n))
           Dmin = SAD(m,n)
           MV = (m,n)
      end if
   end for
endfor

Fig. 2. The FBMA for a reference block.

3. DESIGN OF SYSTOLIC ARRAY

The systolic array features the properties of

modularity, regularity, local interconnection, a high

degree of pipelining, and highly synchronized

multiprocessing. According to Kung’s mapping

methodology of the systolic array, first of all, a sin-

gle assignment code is first derived from the se-

quential algorithm. And a dependence graph is de-

rived, that is a graph that shows dependence of the

computations that occur in an algorithm. By pro-

jecting this dependence graph and adapting the

time-space localities, we get the systolic array.

The projection direction is selected so that the in-

ternal organization of processing elements is sim-

ple and the number of input and output pins is

small [3].

3.1 Single Assignment Code and Data De-

pendence Graph

The single assignment code is a kind of parallel

representations of the algorithm. It assigns every

data in the algorithm to only one variable. Thus,

there is no dependence among variables in the

code. From Fig. 2, we extract the overlapping data

from the adjacent candidate blocks of the search

area. These overlapping data are stored in the reg-

isters of the processing elements and shifted timely

to the adjacent processing elements for the

computations.

The dependence of the data in the search area

for a reference block has relations as (2) and (3),

where y(m,n,k) means the k-th pixel in the candi-

date block with (m,n) coordinates. These mean that

the adjacent candidate blocks have the same pixels.

So the overlapped data within same row and col-

umn of blocks can be reused to compute the SADs

for each candidate block.

),,(),,( knmyknmy aa +=+ (2)

),,(),,( knmyNknmy bb +=×+ (3)

where pnm 2,0 ££ , N<£ ba ,0 and 20 Nk <£

Adapting the dependent relations of (2) and (3)

to algorithm in Fig. 2 and expanding the index

space, we can derive the single assignment code

for a reference block as given in Fig. 3. The mini-

mum SAD(m,n) is selected as Dmin where m and

n range between 0 and 2p. In this case, (m, n) is

the motion vector of the reference block as the final

result.

From the single assignment code of Fig. 3, the

data dependence graph for a reference block can
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for (m=0 ; m<=2p ; m++)
   for (n=0 ; n<=2p ; n++)
      SAD(m,n,0) = 0
      Dmin(m,n) = ∞
      for (k=0 ; k<=N*N-1 ; k++)
         if ((k+1)%N==0 && m>0)
            y(m,n,k) = y(m-1,n,k+N)
         else if((k+1)%N != 0)
            y(m,n,k) = y(m,n-1,k+1)
         end if
         if (n==0)
            x(m,n,k) = x(m-1,n,k)
         else
            x(m,n,k) = x(m,n-1,k)
         end if
         SAD(m,n,k) = SAD(m,n,k-1) + | x(m,n,k) - 

y(m,n,k) |
      end for
      Dmin(m,n)=min(Dmin(m,n-1), SAD(m,n,N*N-1))
      MV(m,n) = (m,n)|Dmin(m,n)

   end for
   Dmin (m,2p)=min(Dmin (m-1,2p), SAD(m,2p,N*N-1))
   MV(m,2p) = (m,n)|Dmin(m,2p)

endfor

Fig. 3. The single assignment code of FBMA
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Fig. 4. Three dimensional dependence graph (N=4 and p=2).

be derived. There are 5 types of arcs (represented

by the columns in   
r 
e ) in the graph and are ex-

pressed as (4):
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For example, when a block size N as 4 and the

maximum search range p as 2, the 3-dimensional

data dependence graph is shown in Fig. 4. An ellip-

tic type node computes SAD and a square type

node selects the candidate block with the minimum

value of SAD and then provides MV.

A row composed of N2 elliptic type nodes in Fig.

4 shows the computation of SAD for a reference

block and a candidate block. A layer composed of

(2p+1) rows of dependence graph represents the

relation of the SADs computation for candidate

blocks within same row in the search area. So the

pixels within the same row can be reused to com-

pute SADs for the adjacent candidate blocks. This

dependence graph is composed of (2p+1) layers and

each layer receives the overlapped pixel data of the

search range from the upper layer and uses it for

the operations of the next candidate block. It means

that the pixels between rows are reused. So the

pixels within the same row and column are reused

for computing the SADs.

One layer of dependence graph is shown in Fig.

5. It requires (N2+1) columns and (2p+1) rows for

computing SAD and selecting the minimum value

of SAD. First, input data of search area are modi-

fied as follows: Gray (circle type) nodes in the up-

per part of Fig. 5 are added. These virtual nodes

offer no operations, but are used to reduce the input

ports for the search area. Thus, the data of the

search area are input to only every N-th nodes in-

stead of inputting to all the nodes on the upper
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Fig. 5. A layer of the dependence graph (N=4, p=2).

boundary. Thus the number of input ports is re-

duced to N from N2. The pixels of the search area

are transferred in the [n k] = [1 -1] direction and

the pixels within same row of blocks are reused.

On the other hand, the data input of reference block

is simpler than that of search area. For all candi-

date blocks, the same reference block is used. So

pixels of the reference block are input to all the

nodes on the upper boundary of the layer in the

dependence graph and the input data are trans-

ferred in the [n k] = [1 0] direction. The computed

SADs are transferred in the [0 1] direction and the

minimal SAD is selected in each layer. The se-

lected SAD is transferred to the next layer and so

we can select the best matched candidate block in

the last layer. The every N-th node in Fig. 4 has

the arc direction in [m n k] = [1 -N 0]. The pixels

of the search area are transferred in this arc to next

layer, and the overlapped data within the same col-

umn of the blocks are reused.

3.2 Deriving the Systolic Array

To derive the signal flow graph or systolic array

from the dependence graph, we need the schedule

vector Tsr and projection vector d
r
. These vectors

should satisfy the conditions of (5) and (6) for the

maintaining the order of computations and the lo-

calities of time and space domains[3].

0    >es T rr
(5)

0    >ds T
rr

(6)

The selection of projection vector d
r
is done as

follows: The number of processing elements and

input/output pins has to be smaller, and the internal

organizations of processing elements have to be

simpler in the signal flow graph or systolic array.

To save silicon area and to enhance throughput

rate, the projection vector d
r
and the schedule vec-

tor Tsr are heuristically chosen as (7) and (8).
TT Ns ]121[ +=

r
(7)

[ ]010=d
r

(8)

Therefore, the pipeline period, a becomes 2 as

given in Eq. (9). This means that a time unit of

delay exists between data inputs of search area.

2== ds T
rra (9)

The resulting 2-dimensional array after projec-

ting the dependence graph of Fig. 5 along the di-

rection of (8) is depicted in Fig. 6. The N input
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Fig. 6. Two dimensional systolic array for FBMA (N=4, p=2)

ports in the upper boundary are merged for input

pixels of reference block and search area. So the

data of the reference block is loaded in the process-

ing elements while the data of search area is input

and also transferred to the adjacent processing ele-

ments for the purpose of computing SAD. The

minimal SAD is selected in each row. The minimal

SAD and the moving vector (m, n) are obtained

at the last row.

3.3 Localization of Data Path

Note, there exist the long crossing paths in the

designed array of Fig. 6. We need to remove them

for the high speed VLSI array. In order to remove

the long paths of [1 –N] direction for transmitting

the data of search area, we transform these paths

to the local paths of [1 0] direction. The data of

reference block are loaded in the processing ele-

ments and are not changed until they are used to

complete the computations for all the candidate

blocks in the search area. Thus, there is enough

time to pass the data to the processing element of

the lower row through the adjacent processing

elements. The data of reference block loaded in the

processing elements of each row are, then, passed

to the adjacent processing elements in the [0 1] di-

rection up to every N-th processing element and

are turned down to the adjacent processing ele-

ments in the [1 1] direction. In this way, all paths

in the array are localized in time and space

domains. Of course the correctness of computa-

tions is maintained even if the array structure is

slightly modified.

The designed systolic array architecture has

some drawbacks. First, it has so many processing

elements. Second, utilization of processing ele-

ments is low because the pipeline period is 2. To

help alleviate this problem, we apply ‘divide and

rule’ strategy. Note that only one of the adjacent

processing elements within row is operated with

the input data at a time. Hence, we can partition

the processing elements of array into two groups

and merge these two groups into one group. This

not only reduces the number of the processing ele-

ments, but also improves their utilization. In this

case, only one register for storing the input data

of reference block is added to the processing

elements. Consequently, the modified design is

shown in Fig. 7. It does not alter computation time

of the array.

3.4 Data Input Sequence

The designed array of Fig. 7 has input ports at

the processing elements in upper row and right

most processing elements for input of pixels in the

reference block and the search area. Table 1 is de
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Fig. 7. The systolic array architecture for FBMA(N=4, p=2)

input
port

clock
di0 di1 di2 di3 di4 di5 di6 di7

1 x0
2 x1
3 x2
4 x3
5 y00 x4
6 - x5
7 y01 x6
8 - x7
9 y02 y10 x8
10 - - x9
11 y03 y11 x10
12 - - x11
13 y04 y12 y20 x12
14 - - - x13
15 y05 y13 y21 x14
16 - - - x15
17 y06 y14 y22 y30
18 - - - -
19 y07 y15 y23 y31
20 x’0 - - -
21 x’1 y16 y24 y32
22 x’2 - - - y40
23 x’3 y17 y25 y33 -
24 y’00 x’4 - - y41
25 - x’5 y26 y34 -
26 y’01 x’6 - - y42
27 - x’7 y27 y35 - y50
28 y’02 y10 x’8 - y43 -
29 - - x’9 y36 - y51
30 y’03 y11 x’10 - y44 -
31 - - x’11 y37 - y52
32 y’04 y12 y’20 x’12 y45 - y60
33 - - - x’13 - y53 -
34 y’05 y13 y’21 x’14 y46 - y61
35 - - - x’15 - y54 -
36 y’06 y14 y’22 y’30 y47 - y62
37 - - - - - y55 - y70
38 y’07 y’15 y’23 y’31 - - y63 -
.....

.....

.....

.....

.....

.....

.....

.....

.....

Table 1. Data input sequence in the designed array

of Fig. 7 (N=4 and p=2)
picted the data input sequence, when a block size

N is 4 and the maximum search range p is 2. The

variables x and y means the pixel of the reference

block and the search area, respectively. The indices

of the variable x and y are the coordinates of the

pixel. For example, the x11 and y11 means the pixel

of (1,1) in the reference block and the search area,

respectively. The variables x’ and y’ means the

pixels of the next reference block and the corre-

sponding search area, respectively.

Through the input ports (di0, di1, di2, di3 in Fig.

7) in upper row, the pixels of the reference block

and the search area are input. First of all, the pixels

of the reference block are input through these ports

for N clock cycles and transferred in [0 –1]

direction. These values are stored in the register

of the processing elements. After storing the pixel

of the reference block in the register of each N/2

processing element, these are transferred in [0 1]

direction for transferring to lower rows of process-

ing elements. At N/2 time-th processing elements,

the pixels of reference block are transferred in [1

1] direction.

After input of the pixels in a reference block

through the input ports in the upper boundary,

(N+2p) pixels for the row of the search area are

input through each port. These data are transferred

in [0 –1] and [1 0] directions for data reusing in

same row and column. The rightmost processing

element of each row has a input port for pixels of

the search area. The SADs are computed between
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Fig. 8. The internal organizations of the processing elements.

the pixels of stored reference block and transferred

search area.

3.5 Internal Organizations of Processing

Elements

As shown in Fig. 7, there are four types of proc-

essing elements denoted as type A, type B, type

C, and type D. First three types compute SADs

with the input values of reference blocks and

search area, while type D processing element se-

lects the minimal SAD. In the following, we con-

sider functions and design of these processing ele-

ment types. The MUX, AD, A, and CMP in Fig.

8 stands for multiplexor, absolute difference, addi-

tion, and comparison operation respectively.

3.5.1 Type A processing elements

First row of the array in Fig. 7 has Type A proc-

essing elements. They receive the values of refer-

ence block and search area from the externals and

compute SADs. The data of the reference block and

search area are transferred in [0 -1] direction,

while the computed SAD is transferred in [0 1]

direction. The gray box in Fig. 8(a) is a data

register. Registers x0 and x1 store the reference

block data because two adjacent processing ele-

ments are merged into one processing element.

Register y stores data for search area and only one

is needed to compute with two data of reference

block. Registers x'0 and x'1 contain the inter-

mediate values for transmitting of the reference

block to the lower row. When the reference block

size is N ´ N and the maximum search range is
p, the processing element saves the inputted value

of the reference block in registers x0 and x1 for

first N clock cycles. After inputting the reference



1283A Systolic Array for High-Speed Computing of Full Search Block Matching Algorithm

block, it saves the input data of (2p+N) search area

in register y for every two clocks. The values

saved in registers x0 and x1 are transmitted to reg-

isters x’0 and x’1 at (N+1)-th clock. And then, the

values of registers x’1 and x’0 are transmitted to

[0 1] direction for the N clocks.

The absolute differences between the inputted

reference block and the search area are accumu-

lated at register SAD. The sum of input SAD and

the absolute difference value between registers y

and x1 is saved in register SAD. And the absolute

difference value between registers y and x0 is ac-

cumulated at SAD. These two operations occur al-

ternatively according to the state of the processing

element.

3.5.2 Type B processing elements

Types B and C processing elements, shown in

Fig. 8(b) and (c), respectively, are present in all

other rows except the first row of Fig. 7. The data

of the reference block in type A processing element

are transferred in [0 –1] direction through regis-

ters x’0 and x’1. In case of type B and type C proc-

essing elements, the data are transferred in [0 1]

direction through registers x0 and x1. The internal

organization, however, remains unchanged except

the transferring direction of the reference block.

3.5.3 Type C processing elements

The internal organization of the type C is similar

to type B and contains registers Dmin, m, and n.

The type C processing element receives the mini-

mal SAD and corresponding motion vector(m,n)

from upper row, and transfers the data to type D

processing element.

3.5.4 Type D processing elements

Type D processing elements are at the right end

of array in Fig. 7. The unit CMP compares the in-

puts and selects the minimal SAD as shown in Fig.

8(d). The minimal SAD of each row is selected and

stored in register Dmin. The motion vector is stored

in registers m and n. The Dmin and motion vector

selected in type D processing element are trans-

ferred through type C processing elements of the

lower row.

4. RESULTS and DISCUSSION

Several factors determine the optimization cri-

teria for the design of array processors. They in-

clude the number of processing elements, the proc-

essing time, and the number of I/O ports. The final

choice of optimality criteria is dependent on the

applications. A product of the array size (A) and

the computation time (T) provides a useful meas-

ure for the hardware cost-effectiveness. In the ap-

plication focused on the throughput, the AT2 is

used to compare the performance of VLSI array

processors [3]. In the following, we consider the

number of the processing elements, the computa-

tion time, and the number of input ports in the de-

signed systolic array processor.

4.1 The number of Processing Elements

Designed systolic array of Fig. 7 has (2p + 1)

rows and each row has (N2/2 + 1) processing ele-

ments to compute SAD and to select the minimal

SAD. Here the size of reference block is N and the

maximum search range is p. Thus, total number

of processing elements is:

Number of Processing Elements =

(N2/2 + 1)(2p + 1) (10)

4.2 The Computational Time

The computational time TA for a problem of the

array process is derived from two nodes which

have the maximum difference in the data depend-

ence graph in computational time step as (11)[3]:

( ){ } 1max
,

+-=
Î

rqsT T

LrqA
rrr

rr (11)

where L is the index set of the nodes in the data

dependence graph. And the node qr and rr are the
nodes that have the largest and the smallest time
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Architecture
Clock cycles

per Block(T)
Clock cycles

per Frame

Num. of Proc.

Elements(A)
Num. of

Registers

Num. of

Data Accesses

Num. of

Input Ports

T. Komarek[5]

S. B. Pan[7]

H. G. Yea[8]

C. Y. Lee[9]

Y. K. Lai[11]

Kittitornkun[12]

544

300

256

256

256

256

881,280

486,000

423,936

414,720

414,720

415,009

273

289

256

256

256

289

4,739

1,120

512

3,488

1,024

1,753

8,192

1,280

768

1,217

752

768

16

17

3

4

3

3

Proposed

VLSI Array
79 128,493 2,193 13,443 1,280 32

Table 2. Comparison of performances (Image size : 576´ 720, block size : 16´ 16, maximum search range : 8)

steps in computation of the problem. It means that

the nodes are the first and the last computed nodes

respectively through the selected schedule vector.

The difference between two nodes, [2p 2p N2] and

[0 (-N+1) (N-1)], is maximum in the data depend-

ence graph of this design. So TF of the designed

VLSI array can be calculated by substituting these

two index points and schedule vector of (7) to (11).

The designed array process shares the input ports

to get the data in reference block and search area.

The initial time for preloading the reference block

to the processing elements, N, is added. Hence, the

computational time for the first reference block, TF

is computed as (12):

[ ]

pNpN

N
NN
Np
p

NTF

6)1(2

1
)1(
)1(2

2
  121

2

2

+++=

++
ú
ú
ú

û

ù

ê
ê
ê

ë

é

--
-++=

(12)

The time interval between the initiations of two

successive problem instances in the process array

is called as the block pipeline period. In the case

that many problem instances are to be processed

by the same array process, then the block pipeline

period is used as a measure of processing speed

in determining the optimization for the array pro-

cessor [3]. If there are M problem instances to be

computed, then the total processing time is M×T,
when the block pipeline period is T. After the data

for the first reference block and the search area

are input to the array, the data of the next reference

block and the corresponding search area are input

continuously without idle time as depicted in Table

1. For the initialization of the reference block, N

unit times are needed. After inputting the reference

block data, (N+2p) data for the search area are

input. Thus, the data input of search area needs

(2(N+2p)-1) unit times because the pipeline period

a is 2. Hence, the block pipeline period T is (3N

+ 4p-1) as given in (13), and the motion vectors

for the next reference blocks are computed at every

T clock cycles.

143
1)2(2

-+=
-++=

pN
pNNT

(13)

4.3 The number of input ports

In the proposed systolic VLSI array, the first

row requires N input ports for the reference block

and the search area, and while the remaining rows

have one input port for the search area on the right

side. Thus, the number of input ports is

p Ns input portNumber of 2+= (14)

A comparison of the proposed architecture with

existing architectures is illustrated in Table 2.

According to CCIR Rec. 601, a video frame is 576´
720 and block size is 16´ 16. Yea [8] and Lai [18]’s
architectures show good performance, but they

have global path and data broadcasting and use the
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search range of –8/+7. Kittitornkun [12]’s archi-

tecture is satisfied with the characteristics of the

VLSI systolic array. It offers fewer memory ac-

cesses per block and the number of the processing

elements. But these architecture can adapt only the

case of p = N/2, and has long spiral paths.

The proposed array has no global path and does

not require broadcasting. Hence, it can operate

with higher clock rate. Compared to the previously

proposed FBMA architectures, this architecture

achieves the highest throughput. The performance

improvement is at least 18% using AT2 parameter

in comparison, where A and T stand for chip area

and processing time respectively. If the image size

is larger, our architecture offers higher perfor-

mance. The proposed array needs the registers in

the processing elements for the data storing and

the pipelining. The number of the register per a

processing element is similar to architecture's of

the Kittitornkun [12]. The proposed array needs a

memory access per a pixel for a reference block

and the search area. The overlapped pixels within

same row and column of the search area are reused

for computing the SADs for the adjacent candidate

blocks. The memory accesses for a search area are

once at every two clocks, because pipeline period

is 2. It makes keep the balance memory access of

each input port and computation in the processing

elements.

The proposed systolic array has many process-

ing elements and input ports. This architecture

needs 256 input pins when the case for the block

size 16´ 16 with the maximum search range of 8.
It is acceptable at current VLSI technology.

Considering the advances in VLSI technologies,

this hardware complexity is not a critical problem

and the throughput is considered as more im-

portant measure. The proposed array processor is

the proper VLSI architecture for getting the motion

compensation of the real time video signal process-

ing system requiring extremely high throughput.

V. CONCLUSION

In this paper, a high-speed systolic array archi-

tecture for FBMA is described. It is suitable for

the application that demand high throughput. The

designed 2-dimensional array compares con-

currently a reference block with multiple candidate

blocks by pipelined operations. A row of the de-

signed array computes the SADs with reusing of

pixels within same row in the search area. Each

row of array gets the overlapped pixels within

same column in search area from the nodes of the

upper rows. So the designed architecture reuses

the pixels not only within the same row but also

within same column in the search area. Because

the designed array has only local path and no

broadcasting of data, it can be operated in higher

clock rate than other existing architectures with

long paths or data broadcasting.

In case of the reference block size of N´N and
the maximum search range of p, the motion vectors

for a reference block are computed at every

(3N+4p-1) clock cycles. The proposed systolic

VLSI architecture has (N 2/2+1)(2p+1) processing

elements and (N+2p) input ports. We compared the

designed VLSI architecture with the other existing

architectures. While the proposed array uses more

processing elements, its performance improvement

in AT2 criterion is better than that of existing

architectures.
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