Browse > Article
http://dx.doi.org/10.1186/s42649-020-00033-8

Double staining method for array tomography using scanning electron microscopy  

Eunjin Kim (National Instrumentation Center for Environmental Management, Seoul National University)
Jiyoung Lee (National Instrumentation Center for Environmental Management, Seoul National University)
Seulgi Noh (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
Ohkyung Kwon (National Instrumentation Center for Environmental Management, Seoul National University)
Ji Young Mun (Neural circuit research group, Korea Brain Research Institute)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 14.1-14.6 More about this Journal
Abstract
Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast. Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.
Keywords
Array tomography; Double staining with uranyl acetate and lead; Scanning electron microscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K.L. Briggman, D.D. Bock, Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22(1), 154-161 (2012). https://doi.org/10.1016/j.conb.2011.10.022   DOI
2 W. Denk, H. Horstmann, Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2(11), e329 (2004). https://doi.org/10.1371/journal.pbio.0020329   DOI
3 Y. Hua, P. Laserstein, M. Helmstaedter, Large-volume en bloc staining for electron microscopy-based connectomics. Nat. Commun. 6, 7923 (2015). https://doi.org/10.1038/ncomms8923   DOI
4 S. Lippens, A. Kremer, P. Borghgraef, C.J. Guerin, Serial block face-scanning electron microscopy for volume electron microscopy. Methods Cell Biol. 152, 69-85 (2019). https://doi.org/10.1016/bs.mcb.2019.04.002   DOI
5 D. Oberti, M.A. Kirschmann, R.H. Hahnloser, Projection neuron circuits resolved using correlative array tomography. Front Neurosci 5, 50 (2011) https://doi.org/10.3389/fnins.2011.0005   DOI
6 A.M. Seligman, H.L. Wasserkrug, J.S. Hanker, A new staining method (OTO) for enhancing contrast of lipid--containing membranes and droplets in osmium tetroxide--fixed tissue with osmiophilic thiocarbohydrazide (TCH). J. Cell Biol. 30(2), 424-432 (1966). https://doi.org/10.1083/jcb.30.2.424   DOI
7 V. Baena, R.L. Schalek, J.W. Lichtman, M. Terasaki, Serial-section electron microscopy using automated tape-collecting ultramicrotome (ATUM). Methods Cell Biol. 152, 41-67 (2019). https://doi.org/10.1016/bs.mcb.2019.04.004   DOI
8 C. Bosch, A. Martinez, N. Masachs, C.M. Teixeira, I. Fernaud, F. Ulloa, E. Perez-Martinez, C. Lois, J.X. Comella, J. DeFelipe, A. Merchan-Perez, E. Soriano, FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front. Neuroanat. 9, 60 (2015). https://doi.org/10.3389/fnana.2015.00060   DOI
9 K.J. Hayworth, J.L. Morgan, R. Schalek, D.R. Berger, D.G. Hildebrand, J.W. Lichtman, Imaging ATUM ultrathin section libraries with WaferMapper: A multi-scale approach to EM reconstruction of neural circuits. Front. Neural Circuits. 8, 68 (2014). https://doi.org/10.3389/fncir.2014.00068   DOI
10 A.A. Wanner, M.A. Kirschmann, C. Genoud, Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience. J. Microsc. 259(2), 137-142 (2015). https://doi.org/10.1111/jmi.12244   DOI
11 A.M. Steyer, A. Schertel, C. Nardis, W. Mobius, FIB-SEM of mouse nervous tissue: Fast and slow sample preparation. Methods Cell Biol. 152, 1-21 (2019). https://doi.org/10.1016/bs.mcb.2019.03.009   DOI
12 D.H. Hall, E. Hartwieg, K.C. Nguyen, Modern electron microscopy methods for C. elegans. Methods Cell Biol. 107, 93-149 (2012). https://doi.org/10.1016/B978-0-12-394620-1.00004-7   DOI
13 Y. Kubota, J. Sohn, S. Hatada, M. Schurr, J. Straehle, A. Gour, R. Neujahr, T. Miki, S. Mikula, Y. Kawaguchi, A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure. Nat. Commun. 9(1), 437 (2018a). https://doi.org/10.1038/s41467-017-02768-7   DOI
14 K.D. Micheva, B. Busse, N.C. Weiler, N. O'Rourke, S.J. Smith, Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron. 68, 639-653 (2010) https://doi.org/10.1016/j.neuron.2010.09.024   DOI
15 S.A. Wilke, J.K. Antonios, E.A. Bushong, A. Badkoobehi, E. Malek, M. Hwang, M. Terada, M.H. Ellisman, A. Ghosh, Deconstructing complexity: Serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J. Neurosci. 33(2), 507-522 (2013). https://doi.org/10.1523/JNEUROSCI.1600-12.2013   DOI
16 L. de Vivo, M. Bellesi, W. Marshall, E.A. Bushong, M.H. Ellisman, G. Tononi, Cirelli C. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science. 355(6324), 507-510 (2017). https://doi.org/10.1126/science.aah5982   DOI
17 Y. Kubota, J. Sohn, Y. Kawaguchi, Large volume electron microscopy and neural microcircuit analysis. Front. Neural Circuits 12, 98 (2018b). https://doi.org/10.3389/fncir.2018.00098   DOI