• Title/Summary/Keyword: Anti-cancer properties

Search Result 392, Processing Time 0.03 seconds

DDX53 Promotes Cancer Stem Cell-Like Properties and Autophagy

  • Kim, Hyuna;Kim, Youngmi;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.54-65
    • /
    • 2017
  • Although cancer/testis antigen DDX53 confers anti-cancer drug-resistance, the effect of DDX53 on cancer stem cell-like properties and autophagy remains unknown. MDA-MB-231 ($CD133^+$) cells showed higher expression of DDX53, SOX-2, NANOG and MDR1 than MDA-MB-231 ($CD133^-$). DDX53 increased in vitro self-renewal activity of MCF-7 while decreasing expression of DDX53 by siRNA lowered in vitro self-renewal activity of MDA-MB-231. DDX53 showed an interaction with EGFR and binding to the promoter sequences of EGFR. DDX53 induced resistance to anti-cancer drugs in MCF-7 cells while decreased expression of DDX53 by siRNA increased the sensitivity of MDA-MB-231 to anti-cancer drugs. Negative regulators of DDX53, such as miR-200b and miR-217, increased the sensitivity of MDA-MB-231 to anti-cancer drugs. MDA-MB-231 showed higher expression of autophagy marker proteins such as ATG-5, $pBeclin1^{Ser15}$ and LC-3I/II compared with MCF-7. DDX53 regulated the expression of marker proteins of autophagy in MCF-7 and MDA-MB-231 cells. miR-200b and miR-217 negatively regulated the expression of autophagy marker proteins. Chromatin immunoprecipitation assays showed the direct regulation of ATG-5. The decreased expression of ATG-5 by siRNA increased the sensitivity to anti-cancer drugs in MDA-MB-231 cells. In conclusion, DDX53 promotes stem cell-like properties, autophagy, and confers resistance to anti-cancer drugs in breast cancer cells.

A Short Review on the Chemistry, Pharmacological Properties and Patents of Obovatol and Obovatal (Neolignans) from Magnolia obovata

  • Chan, Eric Wei Chiang;Wong, Siu Kuin;Chan, Hung Tuck
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.141-150
    • /
    • 2021
  • This short review on the chemistry, pharmacological properties and patents of obovatol and obovatal from Magnolia obovata is the first publication. Pharmacological properties are focused on anti-cancer, anti-inflammatory, anti-platelet and neuroprotective activities. Obovatol and obovatal were first isolated from the leaves of M. obovata. Also reported in the bark and fruits of M. obovata, obovatol and obovatal are neolignans i.e., biphenolic compounds bearing a C-O coupling. Other classes of compounds isolated and identified from M. obovata include sesquiterpene-neolignans, dineolignans, trineolignan, lignans, dilignans, phenylpropanoids, phenylethanoid glycosides, flavonoids, phenolic acids, alkaloids, sesquiterpenes, ketone and sterols. The anti-cancer properties of obovatol and obovatal involve apoptosis, inhibition of the growth, migration and invasion of cancer cell lines. However, obovatol displays cytotoxicity against cancer cells but not obovatal. Similarly, anti-inflammatory, anti-platelet, neuroprotective, anxiolytic and other pharmacological activities were only observed in obovatol. The disparity in pharmacological properties of obovatol and obovatal may be attributed to the -CHO group present in obovatal but absent in obovatol. From 2007 to 2013, eight patents were published on obovatol with one mentioning obovatal. They were all published at the U.S. Patent and Trademark Office by scientists of the Korea Research Institute of Bioscience and Biotechnology (KRIBB) as inventors and assignee, respectively. Some future research and prospects are suggested.

Exploring the Potential of Rosemary Derived Compounds (Rosmarinic and Carnosic Acids) as Cancer Therapeutics: Current Knowledge and Future Perspectives

  • Fazila Sirajudeen;Lara J. Bou Malhab;Yasser Bustanji;Moyad Shahwan;Karem H. Alzoubi;Mohammad H. Semreen;Jalal Taneera;Waseem El-Huneidi;Eman Abu-Gharbieh
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.38-55
    • /
    • 2024
  • Cancer is a global health challenge with high morbidity and mortality rates. However, conventional cancer treatment methods often have severe side effects and limited success rates. In the last decade, extensive research has been conducted to develop safe, and efficient alternative treatments that do not have the limitations of existing anticancer medicines. Plant-derived compounds have shown promise in cancer treatment for their anti-carcinogenic and anti-proliferative properties. Rosmarinic acid (RA) and carnosic acid (CA) are potent polyphenolic compounds found in rosemary (Rosmarinus officinalis) extract. They have been extensively studied for their biological properties, which include anti-diabetic, anti-inflammatory, antioxidant, and anticancer activities. In addition, RA and CA have demonstrated effective anti-proliferative properties against various cancers, making them promising targets for extensive research to develop candidate or leading compounds for cancer treatment. This review discusses and summarizes the anti-tumor effect of RA and CA against various cancers and highlights the involved biochemical and mechanistic pathways.

DDX53 Regulates Cancer Stem Cell-Like Properties by Binding to SOX-2

  • Kim, Youngmi;Yeon, Minjeong;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.322-330
    • /
    • 2017
  • This study investigated the role of cancer/testis antigen DDX53 in regulating cancer stem cell-like properties. DDX53 shows co-expression with CD133, a marker for cancer stem cells. DDX53 directly regulates the SOX-2 expression in anti-cancer drug-resistant $Malme3M^R$ cells. DDX53 and miR-200b were found to be involved in the regulation of tumor spheroid forming potential of Malme3M and $Malme3M^R$ cells. Furthermore, the self-renewal activity and the tumorigenic potential of $Malme3M^R$-CD133 (+) cells were also regulated by DDX53. A miR-200b inhibitor induced the direct regulation of SOX-2 by DDX53 We therefore, conclude that DDX53 may serve as an immunotherapeutic target for regulating cancer stem-like properties of melanomas.

Anticancer Properties of Teucrium persicum in PC-3 Prostate Cancer Cells

  • Tafrihi, Majid;Toosi, Samane;Minaei, Tayebeh;Gohari, Ahmad Reza;Niknam, Vahid;Arab Najafi, Seyed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.785-791
    • /
    • 2014
  • Crude extracts or phytochemicals obtained from some plants have potential anti-cancer properties. Teucrium persicum is an Iranian endemic plant belonging to the Lamiaceae family which has traditionally been used to relieve abdominal pains. However, the anti-cancer properties of this species of the Teucrium genus have not been investigated previously. In this study, we have used a highly invasive prostate cancer cell line, PC-3, which is an appropriate cell system to study anti-tumor properties of plants. A methanolic extract obtained from T persicum potently inhibited viability of PC-3 cells. The viability of SW480 colon and T47D breast cancer cells was also significantly decreased in the presence of the T persicum extract. Flow cytometry suggested that the reduction of cell viability was due to induction of apoptosis. In addition, the results of wound healing and gelatin zymography experiments supported anti-cell invasion activity of T persicum. Interestingly, sublethal concentrations of T persicum extract induced an epithelial-like morphology in a subpopulation of cells with an increase in E-Cadherin and ${\beta}$-Catenin protein levels at the cell membrane. These results strongly suggest that T persicum is a plant with very potent anti-tumor activity.

Eriodictyol induces apoptosis via regulating phosphorylation of JNK, ERK, and FAK/AKT in pancreatic cancer cells

  • Oh, Ui Hyeon;Kim, Da-Hye;Lee, Jungwhoi;Han, Song-I;Kim, Jae-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.83-88
    • /
    • 2022
  • Although it has been intensively studied over the past few decades, pancreatic cancer remains one of the most lethal cancers. Eriodictyol, a plant-derived flavonoid mainly found in citrus fruits, exerts diverse biological effects, including anti-oxidant, anti-cancer, and anti-inflammatory properties. In this study, we investigated the anticancer properties of eriodictyol and its mechanisms of action in pancreatic cancer cells. In both SNU213 and Panc-1 cells, eriodictyol decreased viability, induced apoptosis, and decreased clonogenicity. In addition, eriodictyol treatment increased the phosphorylation level of JNK and decreased the phosphorylation levels of ERK, FAK, and AKT. These observations provide insight into the molecular mechanisms of eriodictyol-induced apoptosis in pancreatic cancer cell lines, and could contribute to the development of candidate compounds for treating pancreatic cancer.

Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5501-5508
    • /
    • 2014
  • Luteolin, 3', 4', 5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. It possesses many beneficial properties including antioxidant, anti-inflammatory, anti-bacterial, anti-diabetic and anti-proliferative actions. Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide. Many signaling pathways are deregulated during the progression of colon cancer. In this review we aimed to analyze the protection offered by luteolin on colon cancer. During colon cancer genesis, luteolin known to reduce oxidative stress thereby protects the cell to undergo damage in vivo. Wnt/${\beta}$-catenin signaling, deregulated during neoplastic development, is modified by luteolin. Hence, luteolin can be considered as a potential drug to treat CRC.

Anti-inflammatory and Anti-cancer Effects of Agricultural Produce Grown with Organic Germanium-enriched Water (유기 게르마늄 농축수로 재배한 농산물의 항염 및 함암효과)

  • Lee, Myeong-Seon
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • The study was conducted to identify the anti-inflammatory and anti-cancer effects in sprouts of mouse-eyed bean (Rhynchosia nulubilis), ginseng (Panax ginseng), perilla (Perilla frutescens), broccoli (Brassica oleracea var. italica), and lettuce (Lactuca sativa) grown with organic germanium concentrate. Western blot analysis was performed to assess the anti-inflammatory activity of the extract. All extracts exhibited noticeable anti-oxidant activity, indicating a significant correlation between the germanium content and anti-oxidant activity (p<0.05). In particular, rat-eyed bean sprouts with the highest germanium content showed significant anti-inflammatory activity (p<0.05) by significantly inhibiting the expression of the inflammatory complexes, NLRP3, cytokines IL-1β and caspase-1. Ginseng and broccoli sprouts showed strong anti-cancer properties and had high anti-oxidant effects (p<0.001). Germanium-concentrated water allows the mass production of agricultural products containing high concentrations of organic germanium. Agricultural produce grown with germanium concentrate add organic germanium to various physiological active ingredients, increasing the anti-oxidant and anti-cancer effects. These results strongly suggest that agricultural products containing high germanium concentrations can be used as novel health supplements to improve health.

Anti-proliferative and Apoptotic Effects of Dendrosomal Farnesiferol C on Gastric Cancer Cells

  • Aas, Zohreh;Babaei, Esmaeil;Feizi, Mohammad Ali Hosseinpour;Dehghan, Gholamreza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5325-5329
    • /
    • 2015
  • Farnesiferol C is a natural compound with various anti-cancer properties that belongs to the class of sesquiterpene coumarins. However, the low bioavailability of farnesiferol C limits its therapeutic potential. Here, we overcame this problem utilizing dendrosome nano-particles and evaluated the anti-cancer effect of dendrosomal farnesiferol C (DFC) on the AGS gastric cancer cell line. The 3-(4,5-dimethyl-thiazol-2yl)-2,5- diphenyl tetrazolium bromide (MTT) assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were respectively used to detect the anti-proliferative properties of DFC and expression ratio of Bax/Bcl-2 as a hallmark of apoptosis. Compared to the void farnesiferol C (FC), our data showed that DFC significantly suppresses the proliferation of AGS cells in a time- and dose-dependent manner (P<0.01). Also, DFC meaningfully increased the expression ratio of Bax/Bcl-2 in AGS cells (P<0.01). The findings demonstrate that our nano-based formulation of farnesiferol C could be considered as a potential therapeutic agent in cancer targeting.

Quercetin induces dual specificity phosphatase 5 via serum response factor

  • Kanokkan Boonruang;Ilju Kim;Chaeyoung Kwag;Junsun Ryu;Seung Joon Baek
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.508-513
    • /
    • 2023
  • The phytochemical quercetin has gained attention for its anti-inflammatory and anti-tumorigenic properties in various types of cancer. Tumorigenesis involves the aberrant regulation of kinase/phosphatase, highlighting the importance of maintaining homeostasis. Dual Specificity Phosphatase (DUSP) plays a crucial role in controlling the phosphorylation of ERK. The current study aimed to clone the DUSP5 promoter, and investigate its transcriptional activity in the presence of quercetin. The results revealed that quercetin-induced DUSP5 expression is associated with the serum response factor (SRF) binding site located in the DUSP5 promoter. The deletion of this site abolished the luciferase activity induced by quercetin, indicating its vital role in quercetin-induced DUSP5 expression. SRF protein is a transcription factor that potentially contributes to quercetin-induced DUSP5 expression at the transcriptional level. Additionally, quercetin enhanced SRF binding activity without changing its expression. These findings provide evidence of how quercetin affects anti-cancer activity in colorectal tumorigenesis by inducing SRF transcription factor activity, thereby increasing DUSP5 expression at the transcriptional level. This study highlights the importance of investigating the molecular mechanisms underlying the anti-cancer properties of quercetin, and suggests its potential use in cancer therapy.