DOI QR코드

DOI QR Code

Anti-inflammatory and Anti-cancer Effects of Agricultural Produce Grown with Organic Germanium-enriched Water

유기 게르마늄 농축수로 재배한 농산물의 항염 및 함암효과

  • Received : 2021.02.01
  • Accepted : 2021.02.18
  • Published : 2021.02.28

Abstract

The study was conducted to identify the anti-inflammatory and anti-cancer effects in sprouts of mouse-eyed bean (Rhynchosia nulubilis), ginseng (Panax ginseng), perilla (Perilla frutescens), broccoli (Brassica oleracea var. italica), and lettuce (Lactuca sativa) grown with organic germanium concentrate. Western blot analysis was performed to assess the anti-inflammatory activity of the extract. All extracts exhibited noticeable anti-oxidant activity, indicating a significant correlation between the germanium content and anti-oxidant activity (p<0.05). In particular, rat-eyed bean sprouts with the highest germanium content showed significant anti-inflammatory activity (p<0.05) by significantly inhibiting the expression of the inflammatory complexes, NLRP3, cytokines IL-1β and caspase-1. Ginseng and broccoli sprouts showed strong anti-cancer properties and had high anti-oxidant effects (p<0.001). Germanium-concentrated water allows the mass production of agricultural products containing high concentrations of organic germanium. Agricultural produce grown with germanium concentrate add organic germanium to various physiological active ingredients, increasing the anti-oxidant and anti-cancer effects. These results strongly suggest that agricultural products containing high germanium concentrations can be used as novel health supplements to improve health.

Keywords

References

  1. Aso H, Suzuki F, Yamaguchi T, Hayashi Y, Ebina T, Ishida N. 1985. Induction of interferon and activation of NK cells and macrophages in mice by oral administration of Ge-132, and organic germanium compound. Microbiol. Immmunol., 29(1): 65-74 https://doi.org/10.1111/j.1348-0421.1985.tb00803.x
  2. Broz P, Dixit VM. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol., 16(7):407-20 https://doi.org/10.1038/nri.2016.58
  3. Chang EJ, Oh H. 2005. Effects of addition of inorganic germanium, GeO2 on the growth, germanium and saponin contents of ginseng adventitious root in submerged culture. J. Ginseng Res., 29 (3):145-151 https://doi.org/10.5142/JGR.2005.29.3.145
  4. Clardy J, Walsh C. 2004. Lessons from natural molecules. Nature., 432:829-837 https://doi.org/10.1038/nature03194
  5. Ding J, Shao F. 2017. SnapShot: The Nonca nonical inflammasome. Cell., 168(3): 544-544 e1 https://doi.org/10.1016/j.cell.2017.01.008
  6. Gerber GB, Leonard A. 1997. Mutagenicity, carcinogenicity and teratogenicity of germanium compounds. Mutation Research., 387:141-146 https://doi.org/10.1016/S1383-5742(97)00034-3
  7. Ho CC, Cherm YF, Lin MT. 1990. Effects of organo germanium compound 2-carboxyethyl germanium sesquioxide on cardiovascular function motor activity in rats. Pharmacology., 41:286-291 https://doi.org/10.1159/000138736
  8. Hur JY, Kim MJ, Hong SP, Yang, HJ. 2020. Anticancer effects of Ganjang with different aging periods. J Korean Soc. Food Cult., 35(2): 215-223 https://doi.org/10.7318/KJFC/2020.35.2.215
  9. Iijima M, Mugishima M, Takeuchi M, Uchiyama S, Kobayashi I, Maruyama S. 1990. A case of inorganic germanium poisoning with peripheral and cranial nephropathy. Myopathy and Autonomic Dysfunction., 42(9):851-856
  10. Ikemoto K. 1996. 2-Carboxyethyl germanium com pound, as an inducer of contrasuppressor T cells. Experientia., 52(2):159-166 https://doi.org/10.1007/BF01923363
  11. Jang JJ, Cho KJ, Lee YS, Bae JH. 1991. Modifying responses of allyl sulfide, indole-3-carbinol and germanium in a rat multi-organ carcinogenesis model. Carcino genesis., 12(4): 691-695 https://doi.org/10.1093/carcin/12.4.691
  12. Jeong WS. 2008. Soybean as functional food materials. Inje Food Sci Forum Collection of Dissertations., 15:135-149
  13. Kim EJ, Kim TS, Kim MH. 2013. Phytochemical and antioxidant properties of broccoli sprouts cultivated in the plant factory system. Korean J. Food Culture., 28(1):57-69 https://doi.org/10.7318/KJFC/2013.28.1.057
  14. Kim EJ, Lee KI, Park KY. 2002. Quality analysis of nutrients in soybean sproutes cultures with Germanium. J. Korean Soc. Food Sci. Nutr., 31:1150 https://doi.org/10.3746/JKFN.2002.31.6.1150
  15. Kim EJ, Lee KI, Park KY. 2004. The growth inhibition against gastric cancer cell in germanium or soybean sprouts cultured with germanium. Korean J. Soc. Food Cookery Sci. 20(3):287-291
  16. Kim KT, Kim SS, Lee SH, Kim DM. 2003. The functionally of barley leaf and its application on functional foods. Food Science and Industry., 36:45-49
  17. Kim MJ, Kim IJ, Nam SY, Lee CH, Yun T, Song BH. 2006. Effects of drying methods on content of act ive components, antioxidant activity and color values of Saururus chinensis bail. Korean J. Medicinal Crop Sci., 14:8-13
  18. Lamkanfi M, Dixit VM. 2014. Mechanisms and func tions of inflammasomes. Cell., 277(1):61-75
  19. Lee HM, Chung Y. 1991. Effect of organic germanium on metallothionnein induction in liver and kidney of cadmium and mercury intoxicated rats. Yakhak Hoeji., 35(2):99-110
  20. Lee JS, Park JL, Kim SH, Park SH, Kang SK, Park CB, Sohn TU, Kang JK, Kim YB. 2004. Oral single and repeateddose toxicity studies on Geranti Bio-Ge yeast, organic germanium fortified yeasts, in rats. J. Toxicol. Sci. 29:541-553 https://doi.org/10.2131/jts.29.541
  21. Lee MS. 2016. Study on efficacy of agricultural products containing germanium. J. of The Korea Industry Association., 10(6): 451-459 https://doi.org/10.21184/jkeia.2016.12.10.6.451
  22. Lee ST, Lee YH, Heo JY, Hong KP, Dahlgren RA, Heo JS. 2008. The growth characteristics and germanium uptake by water celery in soil treated with germanium. Korean J. of Environmental Agriculture., 27(2):185-190 https://doi.org/10.5338/KJEA.2008.27.2.185
  23. Man SM, Karki R, Kannegan TD. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev., 157(5):1013-22
  24. Mathur A, Hayward JA, Man SM. 2018. Molecular mechanisms of inflammasome signaling. J. Leukoc Biol., 103(2): 233
  25. Mochizuki H, Kada K. 1982. Antimutagenic effect of Ge-132 on ?-ray-induced mutation in Escherichia coli B/rWP2 trp-. Int. J. Radiat. Bio., 42(6): 653-659 https://doi.org/10.1080/09553008214551621
  26. Newman DJ, Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75:311-355 https://doi.org/10.1021/np200906s
  27. Obra K, Saito T, Sato H, Yamakage K, Watanabe T, Kakizawa M, Tsukamoto T, Kobayashi K, Hongo M, Yoshinaga K. 1991. Germanium poisoning; Clinical symptoms and renal damage caused by long-term intake of germanium. Japanese J. of Medicine., 30(1): 67-72 https://doi.org/10.2169/internalmedicine1962.30.67
  28. Seo DC, Cheon YS, Park SK, Park JH, Kim AR, Lee WG, Lee ST, Lee YH, Cho JS, Heo JS. 2010. Applications of different types of germanium compounds on rice plant growth and its Ge uptake. Korean J. of soil Science Fertilizer., 43(2):166-173
  29. Shi J, Gao W, Shao F. 2017. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci., 42(4): 245-254 https://doi.org/10.1016/j.tibs.2016.10.004
  30. Sugiya S, Sakamaki T, Sugita Y, Abo H, Satoh 1986. Subacute oral toxicity of carboxyethylger manium sesquioxide (Ge132) in rats. Pharmacometrics., 31(6):1181-1190
  31. Suzuki F, Brukiewicz RR, Pollard RB. 1986. Cooperation of lymphokine(s) and macro phages in expression of antitumor activity of carboxyethylgermanium (Ge-132). Anti tumor Res., 62(2):177-182
  32. Suzuki Y, Taguchi K. 1983. Phamacological studies of carboxyethylgermanium sesquioxide (Ge-132). Pharmacometrics., 26(5): 803-810
  33. Wei XS. 1992. Effect of yeast on bioenrichment of germanium. Food Science., 149:49-54
  34. Yi YS. 2017. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophagemediated inflammatory responses. Immunology., 152(2):207-217 https://doi.org/10.1111/imm.12787