Browse > Article
http://dx.doi.org/10.3839/jabc.2022.011

Eriodictyol induces apoptosis via regulating phosphorylation of JNK, ERK, and FAK/AKT in pancreatic cancer cells  

Oh, Ui Hyeon (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
Kim, Da-Hye (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
Lee, Jungwhoi (Subtropical/tropical organism gene bank, Jeju National University)
Han, Song-I (Subtropical/tropical organism gene bank, Jeju National University)
Kim, Jae-Hoon (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
Publication Information
Journal of Applied Biological Chemistry / v.65, no.2, 2022 , pp. 83-88 More about this Journal
Abstract
Although it has been intensively studied over the past few decades, pancreatic cancer remains one of the most lethal cancers. Eriodictyol, a plant-derived flavonoid mainly found in citrus fruits, exerts diverse biological effects, including anti-oxidant, anti-cancer, and anti-inflammatory properties. In this study, we investigated the anticancer properties of eriodictyol and its mechanisms of action in pancreatic cancer cells. In both SNU213 and Panc-1 cells, eriodictyol decreased viability, induced apoptosis, and decreased clonogenicity. In addition, eriodictyol treatment increased the phosphorylation level of JNK and decreased the phosphorylation levels of ERK, FAK, and AKT. These observations provide insight into the molecular mechanisms of eriodictyol-induced apoptosis in pancreatic cancer cell lines, and could contribute to the development of candidate compounds for treating pancreatic cancer.
Keywords
Apoptosis; Eriodictyol; FAK/AKT; MAPK; Pancreatic cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78(5): 431-441. doi: 10.1016/j.lfs.2005.09.012   DOI
2 Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 19(6):1578. doi: 10.3390/ijms19061578   DOI
3 Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(1):69-75. doi: 10.1289/ehp.01109s169   DOI
4 Zamora-Ros R, Touillaud M, Rothwell JA, Romieu I, Scalbert A (2014) Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits. Am J Clin Nutr 100(1): 11-26. doi: 10.3945/ajcn.113.077743   DOI
5 Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1): 7-30. doi: 10.3322/caac.21442   DOI
6 Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11): 2913-2921. doi: 10.1158/0008-5472.CAN-14-0155   DOI
7 Tripoli E, Guardia ML, Giammanco S, Majo DD, Giammanco M (2007) Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry 104(2): 466-479. doi: 10.1016/j.foodchem.2006.11.054   DOI
8 Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 24(6): 1123. doi: 10.3390/molecules24061123   DOI
9 He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z (2015) Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 20(5): 9183-9213. doi: 10.3390/molecules20059183   DOI
10 Alkhalidy H, Moore W, Wang Y, Luo J, McMillan RP, Zhen W, Zhou K, Liu D (2018) The Flavonoid Kaempferol Ameliorates Streptozotocin-Induced Diabetes by Suppressing Hepatic Glucose Production. Molecules 23(9): 2238. doi: 10.3390/molecules23092338   DOI
11 Lee J, Han SI, Yun JH, Kim JH (2015) Quercetin-3-O-glucoside supress epidermal growth factor-induced migaration by inhibiting EGFR signaling in pancreatic cancer cells. Tumour Biol 36(12): 9385-9393. doi: 10.1007/s13277-015-3682-x   DOI
12 Sak K (2012) Chemotherapy and dietary phytochemical agents. Chemother Res Pract 2012: 282570, PMID: 23320169. doi: 10.1155/2012/282570   DOI
13 Maru GB, Hudlikar RR, Kumar G, Gandhi K, Mahimkar MB (2016) Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J Biol Chem 7(1): 88-99. doi: 10.4331/wjbc.v7.i1.88   DOI
14 Miyake Y, Yamamoto K, Osawa T (1997) Isolation of Eriocitrin (Eriodictyol 7-rutinoside) from Lemon Fruit (Citrus limon BURM. f.) and Its Antioxidative Activity. Food Science and Technology International, Tokyo 3(1): 84-89. doi: 10.3136/fsti9596t9798.3.84   DOI
15 Brito A, Ramirez JE, Areche C, Sepulveda B, Simirgiotis MJ (2014) HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19(11): 17400-1742. doi: 10.3390/molecules191117400   DOI
16 Mandalari G, Bennett RN, Bisignano G, Saija A, Dugo G, Lo Curto RB, Waldron KW (2006) Characterization of flavonoids and pectins from bergamot (Citrus bergamia Risso) peel, a major byproduct of essential oil extraction. J Agric Food Chem 54(1): 197-203. doi: 10.1021/jf051847n   DOI
17 Mariyappan P, Kalaiyarasu T, Manju V (2017) Effect of eriodictyol on preneoplastic lesions, oxidative stress and bacterial enzymes in 1,2-dimethyl hydrazine-induced colon carcinogenesis. Toxicol Res (Camb) 6(5): 678-692. doi: 10.1039/c7tx00074j   DOI
18 Wang F, Wang Y-H, Wang J-J, Xu H-L, Wang C-M (2016) Eriodictyol-induced anti-cancer and apoptotic effects in human hepatocellular carcinoma cells are associated with cell cycle arrest and modulation of apoptosis-related proteins. Bangladesh Journal of Pharmacology 11(2):285. doi: 10.3329/bjp.v11i2.25549   DOI
19 Huang M, Tang SN, Upadhyay G, Marsh JL, Jackman CP, Shankar S, Srivastava RK (2014) Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways. PLoS One 9(4):e92161. doi: 10.1371/journal.pone.0092161   DOI
20 Zhang Y, Zhang XX, Yuan RY, Ren T, Shao ZY, Wang HF, Cai WL, Chen LT, Wang XA, Wang P (2018) Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo. Onco Targets Ther 11:4479-4490. doi: 10.2147/OTT.S164670   DOI
21 Awasthi N, Monahan S, Stefaniak A, Schwarz MA, Schwarz RE (2018) Inhibition of the MEK/ERK pathway augments nab-paclitaxel-based chemotherapy effects in preclinical models of pancreatic cancer. Oncotarget 9: 5274-5286. doi: 10.18632/oncotarget.23684   DOI
22 Lane D, Matte I, Laplante C, Garde-Granger P, Rancourt C, Piche A (2013) Osteoprotegerin (OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis. J Ovarian Res 6(1): 82. doi: 10.1186/1757-2215-6-82   DOI
23 Koff JL, Ramachandiran S, Bernal-Mizrachi L (2015) A time to kill: targeting apoptosis in cancer. Int J Mol Sci 16(2): 2942-2955. doi: 10.3390/ijms16022942   DOI
24 Lee J, Hun Yun J, Lee J, Choi C, Kim JH (2015) Blockade of dualspecificity phosphatase 28 decreases chemo-resistance and migration in human pancreatic cancer cells. Sci Rep 5: 12296. doi: 10.1038/srep12296   DOI
25 Kanteti R, Batra SK, Lennon FE, Salgia R (2016) FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget 24, 31586-31601. doi: 10.18632/oncotarget.8040   DOI
26 Kim DH, Han SI, Go B, Oh UH, Kim CS, Jung YH, Lee J, Kim JH (2019) 2-Methoxy-4-vinylphenol Attenuates Migration of Human Pancreatic Cancer Cells via Blockade of FAK and AKT Signaling. Anticancer Res 39(12): 6685-6691. doi: 10.21873/anticanres.13883   DOI
27 Chan PC, Lai JF, Cheng CH, Tang MJ, Chiu CC, Chen HC (1999) Suppression of ultraviolet irradiation-induced apoptosis by overexpression of focal adhesion kinase in Madin-Darby canine kidney cells. J Biol Chem 274(38): 26901-26906. doi: 10.1074/jbc.274.38.26901   DOI
28 Zhang X, Jiang J, Chen Z, Cao M (2019) Silibinin inhibited autophagy and mitochondrial apoptosis in pancreatic carcinoma by activating JNK/SAPK signaling. Pathol Res Pract 215(9): 152530. doi: 10.1016/j.prp.2019.152530   DOI
29 Zhang Y, Zhang R, Ni H (2020) Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway. Arch Med Sci 16(2): 446-452. doi: 10.5114/aoms.2019.85152   DOI
30 Ravishankar D, Rajora AK, Greco F, Osborn HM (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 45(12): 2821-2831. doi: 10.1016/j.biocel.2013.10.004   DOI
31 Zhang L, Fang Y, Xu XF, Jin DY (2017) Moscatilin induces apoptosis of pancreatic cancer cells via reactive oxygen species and the JNK/SAPK pathway. Mol Med Rep 15: 1195-1203. doi: 10.3892/mmr.2017.6144   DOI
32 Kim A, Im M, Yim NH, Kim T, Ma JY (2014) A novel herbal medicine, KIOM-C, induces autophagic and apoptotic cell death mediated by activation of JNK and reactive oxygen species in HT1080 human fibrosarcoma cells. PLoS One 9(5): e98703. doi: 10.1371/journal.pone.0098703   DOI
33 Ono H, Basson MD, Ito H (2014) PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling. PLoS One 9(5): e96060. doi: 10.1371/journal.pone.0096060   DOI
34 Li J, Liang X, Yang X (2012) Ursolic acid inhibits growth and induces apoptosis in gemcitabine-resistant human pancreatic cancer via the JNK and PI3K/Akt/NF-kB pathways. Oncol Rep 28: 501-510. doi: 10.3892/or.2012.1827   DOI
35 Li W, Du Q, Li X, Zhang X, Lv F, Huang G, Yang J, Liu S (2020) Eriodictyol inhibits proliferation, metastasis and induces apoptosis of glioma cells via PI3K/AKT/ NF-kB signaling pathway. Front Pharmacol 25(11): 114. doi: 10.3389/fphar.2020.00114   DOI
36 Millimouno FM, Dong J, Yang L, Li J, Li X (2014) Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 7(11): 1081-1107. doi: 10.1158/1940-6207.CAPR-14-0136   DOI
37 Chand S, O'Hayer K, Blanco FF, Winter JM, Brody JR (2016) The Landscape of Pancreatic Cancer Therapeutic Resistance Mechanisms. Int J Biol Sci 12(3): 273-282. doi: 10.7150/ijbs.14951   DOI
38 Bullock A, Stuart K, Jacobus S, Abrams T, Wadlow R, Goldstein M, Miksad R (2017) Capecitabine and oxaliplatin as first and second line treatment for locally advanced and metastatic pancreatic ductal adenocarcinoma. J Gastrointest Oncol 8(6): 945-952. doi: 10.21037/jgo.2017.06.06   DOI