DOI QR코드

DOI QR Code

Luteolin, a Bioflavonoid Inhibits Colorectal Cancer through Modulation of Multiple Signaling Pathways: A Review

  • Pandurangan, Ashok Kumar (Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia) ;
  • Esa, Norhaizan Mohd (Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia)
  • Published : 2014.07.30

Abstract

Luteolin, 3', 4', 5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. It possesses many beneficial properties including antioxidant, anti-inflammatory, anti-bacterial, anti-diabetic and anti-proliferative actions. Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide. Many signaling pathways are deregulated during the progression of colon cancer. In this review we aimed to analyze the protection offered by luteolin on colon cancer. During colon cancer genesis, luteolin known to reduce oxidative stress thereby protects the cell to undergo damage in vivo. Wnt/${\beta}$-catenin signaling, deregulated during neoplastic development, is modified by luteolin. Hence, luteolin can be considered as a potential drug to treat CRC.

Keywords

References

  1. Acebedo AR, Amor EC, Jacinto SD (2014). Apoptosis-inducing activity of HPLC fraction from Voacanga globosa (Blanco) merr. on the human colon carcinoma cell. Asian Pac J Cancer Prev, 15, 617-22. https://doi.org/10.7314/APJCP.2014.15.2.617
  2. Ahn B, Ohshima H (2001). Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res, 61, 8357-60.
  3. Ansil PN, Prabha SP, Nitha A, et al (2013). Chemopreventive effect of Amorphophallus campanulatus (Roxb.) blume tuber against aberrant crypt foci and cell proliferation in 1, 2-dimethylhydrazine induced colon carcinogenesis. Asian Pac J Cancer Prev, 14, 5331-9. https://doi.org/10.7314/APJCP.2013.14.9.5331
  4. Ashokkumar P, Sudhandiran G (2011). Luteolin inhibits cell proliferation during azoxymethane-induced experimental colon carcinogenesis via Wnt/$\beta$-catenin pathway. Invest New Drugs, 29, 273-84. https://doi.org/10.1007/s10637-009-9359-9
  5. Ashokkumar P, Sudhandiran P (2008). Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharm, 62, 590-7. https://doi.org/10.1016/j.biopha.2008.06.031
  6. Attoub S, Hassan AH, Vanhoecke B, et al (2011). Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur J Pharmacol, 651, 18-25. https://doi.org/10.1016/j.ejphar.2010.10.063
  7. Banerjee N, Kim H, Talcott S, et al (2013). Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci (ACF) and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR. Carcinogenesis, 34, 2814-22. https://doi.org/10.1093/carcin/bgt295
  8. Baserga R, Hongo A, Rubini M, et al (1997). The IGF-I receptor in cell growth, transformation and apoptosis. Biochim Biophys Acta, 1332, 105-26.
  9. Baskar A, Ignacimuthu S, Micheal GP, et al (2011). Cancer chemopreventive potential of luteolin-7-O-glucoside isolated from ophiorrhizamungos linn. Nutri Cancer, 63, 130-8.
  10. Bird RP (1995). Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer Lett, 93, 55-71. https://doi.org/10.1016/0304-3835(95)03788-X
  11. Bird RP, Good CK (2000). The significance of aberrant crypt foci in understanding the pathogenesis of colon cancer. Toxicol Lett, 112-113, 395-402. https://doi.org/10.1016/S0378-4274(99)00261-1
  12. Chan JY, Kwong M (2000). Impaired expression of glutathione synthetic enzyme genesin mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta, 1517, 19-26. https://doi.org/10.1016/S0167-4781(00)00238-4
  13. Chan TS, Galati G, Pannala AS, et al (2003). Simultaneous detection of the antioxidant and pro-oxidant activity of dietary polyphenolics in a peroxidase system. Free Rad Res, 37, 787-94. https://doi.org/10.1080/1071576031000094899
  14. Chian S, Li YY, Wang XJ, Tang XW (2014). Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the nrf2 pathway. Asian Pac J Cancer Prev, 15, 2911-6. https://doi.org/10.7314/APJCP.2014.15.6.2911
  15. Chihara T, Shimpo K, Kaneko T, Beppu H (2010). Inhibition of 1, 2-dimethylhydrazine-induced mucin-depleted foci and O6-methylguanine DNA adducts in the rat colorectum by boiled garlic powder. Asian Pac J Cancer Prev, 11, 1301-4.
  16. Chiou YS, Ma NJ, Sang S, et al (2012). Peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. J Agri Food Chem, 60, 3441-51. https://doi.org/10.1021/jf300441p
  17. Choi EM (2007). Modulatory effects of luteolin on osteoblastic function and inflammatory mediators in osteoblastic MC3T3-E1 cells. Cell Biol Int, 31, 870-77. https://doi.org/10.1016/j.cellbi.2007.01.038
  18. deLau W, Barker N, Clevers H (2007). WNT signaling in the normal intestine and colorectal cancer. Front Biosci, 12, 471-91. https://doi.org/10.2741/2076
  19. Fernandes-Alnemri T, Litwack G, Alnmri ES (1995). Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res, 55, 2737-42.
  20. Fernandez-Alnemri T, Takahashi A, Armstrong R, et al (1995). Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res, 55, 6045-55.
  21. Frasca F, Pandini G, Sciacca L, et al (2008). The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem, 114, 23-37. https://doi.org/10.1080/13813450801969715
  22. Fuchs SY, Ougolkov AV, Spiegelman VS, et al (2005). Oncogenic beta-catenin signaling networks in colorectal cancer. Cell Cycle, 4, 1522-39. https://doi.org/10.4161/cc.4.11.2129
  23. Gates MA, Tworoger SS, Hecht JL, et al (2007). A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer, 121, 2225-32. https://doi.org/10.1002/ijc.22790
  24. Gow AJ, Chen Q, Hess DT, et al (2002). Basal and stimulated protein S-nitrosylation in multiple cell types and tissues. J Biol Chem, 277, 9637-40. https://doi.org/10.1074/jbc.C100746200
  25. Greenlee R, Murray R, Bolden S, et al (2000). Cancer statistics, 2000. CA Cancer J Clin, 50, 7-33. https://doi.org/10.3322/canjclin.50.1.7
  26. Gregus Z, Fekete T, Halaszi E, et al (1996). Lipoic acid impairs glycine conjucation of benzoic acid and renal excretion of benzoglycine. Drug Metabol Dispos, 24, 682-8.
  27. Guizani N, Waly MI, Singh V, et al (2013). Nabag (Zizyphus spinachristi) extract prevents aberrant crypt foci development in colons of azoxymethane-treated rats by abrogating oxidative stress and inducing apoptosis. Asian Pac J Cancer Prev, 14, 5031-5. https://doi.org/10.7314/APJCP.2013.14.9.5031
  28. Gupta RA, DuBois RN (2001). Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer, 1, 11-21. https://doi.org/10.1038/35094017
  29. Hakomori S (1996). Tumor malignancy defined by aberrant glycosylation and sphingo (glyco) lipid metabolism. Cancer Res, 56, 5309-18.
  30. Halliwell B, Gutteridge JMC (1989). Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. In: Cheeseman Kh, Slater Tf, Editors. Free Radicals In Biology And Medicine. Oxford: Clarendon Press.144-7.
  31. Hamiza OO, Rehman MU, Tahir M, et al (2012). Amelioration of 1,2 dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in Wistar rats. Asian Pac J Cancer Prev, 13, 4393-402. https://doi.org/10.7314/APJCP.2012.13.9.4393
  32. Hanif R, Pittas A, Feng Y (1996). Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandinindependent pathway. Biochem Pharmacol, 52, 237-45. https://doi.org/10.1016/0006-2952(96)00181-5
  33. He XQ, Cichello SA, Duan JL, et al (2014). Canola oil influence on azoxymethane-induced colon carcinogenesis, hypertriglyceridemia and hyperglycemia in Kunming mice. Asian Pac J Cancer Prev, 15, 2477-83. https://doi.org/10.7314/APJCP.2014.15.6.2477
  34. Hempel J, Pforte H, Raab B, et al (1999). Flavonols and flavones of parsley cell suspension culture change the antioxidative capacity of plasma in rats. Mol Nutr Food Res, 43, 201-4.
  35. Hess DT, Matsumoto A, Kim SO, et al (2005). Protein S-nitrosylation: preview and parameters. Nat Rev Mol Cell Biol, 6, 150-66. https://doi.org/10.1038/nrm1569
  36. Hirayama A, Yoh K, Nagase S, et al (2003). EPR imaging of reducing activity in Nrf2 transcriptional factor-deficient mice. Free Radic Biol Med, 34, 1236-42. https://doi.org/10.1016/S0891-5849(03)00073-X
  37. Holland R, Hawkins AE, Eggler AL, et al (2008). Prospective type 1 and type 2 disulfides of Keap 1 protein. Chem Res Toxicol, 21, 2051-60. https://doi.org/10.1021/tx800226m
  38. Hwang JT, Park OJ, Lee YK, et al (2011). Anti-tumor effect of luteolin is accompanied by AMP-activated protein kinase and nuclear factor-${\kappa}B$ modulation in HepG2 hepatocarcinoma cells. Int J Mol Med, 28, 25-31.
  39. Itoh K, Chiba T, Takahashi S, et al (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun, 236, 313-22. https://doi.org/10.1006/bbrc.1997.6943
  40. Jung JI, Cho HI, Kim J, et al (2008). trans-10, cis-12 conjugated linoleic acid inhibits insulin-like growth factor-I receptor signaling in TSU-Pr1 human bladder cancer cells. J Med Food, 13, 13-9.
  41. Khor TO, Huang MT, Prawan A, et al (2008). Increased susceptibility of Nrf2 knockout mice to colitis associated colorectal cancer. Cancer Prev Res, 1, 187-91. https://doi.org/10.1158/1940-6207.CAPR-08-0028
  42. Kim DY, Cho HJ, Kim J, et al (2012). Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells. BMC Gastroenterol, 12, 9. https://doi.org/10.1186/1471-230X-12-9
  43. Kocic B, Kitic D, Brankovic S (2013). Dietary flavonoid intake and colorectal cancer risk: evidence from human population studies. J BUON, 18, 34-43.
  44. Kumar A, Pandurangan AK, Lu F, et al (2012). Chemopreventive sphingadienes downregulate wnt signaling via a PP2A/ Akt/GSK3$\beta$ pathway in colon cancer. Carcinogenesis, 33, 1726-35. https://doi.org/10.1093/carcin/bgs174
  45. LeMarchand L (2002). Cancer preventive effects of flavonoids-a review. Biomed Pharmaco, 56, 296-301. https://doi.org/10.1016/S0753-3322(02)00186-5
  46. Lim DY, Cho HJ, Kim J, et al (2012). Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells. BMC Gastroenterol, 12, 9. https://doi.org/10.1186/1471-230X-12-9
  47. Lim DY, Jeong Y, Tyner AL, et al (2007). Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am J Physiol Gastroint Liver Physiol, 292, 66-75.
  48. Madrigal-Bujaidar E, Martino Roaro L, Garcia-Aguirre K, Garcia-Medina S, Alvarez-Gonzalez I (2013). Grapefruit juice suppresses azoxymethane-induced colon aberrant crypt formation and induces antioxidant capacity in mice. Asian Pac J Cancer Prev, 14, 6851-6. https://doi.org/10.7314/APJCP.2013.14.11.6851
  49. Manju V, Balasubramaniyan V, Nalini N (2005). Rat colonic lipid peroxidation and antioxidant status: the effects of dietary luteolin on 1,2-dimethylhydrazine challenge. Cell Mol Biol Lett, 10, 535-51.
  50. Manju V, Nalini N (2005). Chemopreventive potential of luteolin during colon carcinogenesis induced by 1,2-dimethylhydrazine. Ital J Biochem, 54, 268-75.
  51. Manju V, Nalini N (2007). Protective role of luteolin in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Cell Biochem Function, 25, 189-94. https://doi.org/10.1002/cbf.1305
  52. McLellan EA, Medline A, Bird RP (1991). Dose responsive and proliferative characteristics of aberrant crypt foci: a putative preneolastic lesion in rat colon. Carcinogenesis, 12, 2093-8. https://doi.org/10.1093/carcin/12.11.2093
  53. Mencherini T, Picerno P, Scesa C, et al (2007). Triterpene, antioxidant, and antimicrobial compounds from melissa officinalis. J Nat Products, 70, 1889-94. https://doi.org/10.1021/np070351s
  54. Miean KH, Mohamed S (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) contentof edible tropical plants. J Agri Food Chem, 49, 3106-12. https://doi.org/10.1021/jf000892m
  55. Moser A, Pitot HC, Dove WF (1990). A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science, 247, 322-4. https://doi.org/10.1126/science.2296722
  56. Neuhouser ML (2004). Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer, 50, 1-7. https://doi.org/10.1207/s15327914nc5001_1
  57. Nishitani Y, Yamamoto K, Yoshida M, et al (2013). Intestinal anti-inflammatory activity of luteolin: role of the aglycone in NF-${\kappa}B$ inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors, 39, 522-33. https://doi.org/10.1002/biof.1091
  58. Pandurangan AK (2013). Potential targets for the prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev, 14, 2201-5. https://doi.org/10.7314/APJCP.2013.14.4.2201
  59. Pandurangan AK, Esa NM (2014). Signal transducer and activator of transcription 3: a promising target in colitis associated cancer. Asian Pac J Cancer Prev, 15, 551-60. https://doi.org/10.7314/APJCP.2014.15.2.551
  60. Pandurangan AK, Dharmalingam P, Ananda Sadagopan SK, et al (2013). Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/$\beta$-catenin/GSK-3$\beta$ signaling. J Environ Pathol Toxicol Oncol, 32, 131-9. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2013007522
  61. Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, et al (2013). Luteolin, a bioflavonoid attenuates azoxymethaneinduced effects on mitochondrial enzymes in Balb/c mice. Asian Pac J Cancer Prev, 14, 6669-72. https://doi.org/10.7314/APJCP.2013.14.11.6669
  62. Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, et al (2013). Inhibitory effect of luteolin on the status of membrane bound ATPases against azoxymethane-induced colorectal cancer. J Chem Pharm Res, 5, 123-7.
  63. Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, et al (2014). Luteolin, a bioflavonoid inhibits azoxymethaneinduced colorectal cancer through Nrf2 signaling. Toxicol Mech Methods, 24, 13-20. https://doi.org/10.3109/15376516.2013.843111
  64. Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, et al (2014). Inhibitory effect of luteolin on azoxymethaneinduced colon carcinogenesis: involvement of iNOS and COX-2. Pharmacog Mag, 10, 306-10. https://doi.org/10.4103/0973-1296.133285
  65. Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, et al (2014). Luteolin inhibits matrix metalloproteinase 9 and 2 in azoxymethane-induced colon carcinogenesis. Human Exp Toxicol, (Equb Ahead of Print).
  66. Pandurangan AK, Dharmalingam P, Anandasadagopan SK, et al (2012). Effect of luteolin on the levels of glycoproteins during azoxymethane-induced colon carcinogenesis in mice. Asian Pac J Cancer Prev, 13, 1569-73. https://doi.org/10.7314/APJCP.2012.13.4.1569
  67. Pandurangan AK, Esa NM (2013). Dietary non-nutritive factors on regulatory molecules in colorectal cancer: an update. Asian Pac J Cancer Prev, 14, 5543-52. https://doi.org/10.7314/APJCP.2013.14.10.5543
  68. Pandurangan AK, Ganapasam S (2013a). Luteolin modulates cellular thiols on azoxymenthane-induced colon carcinogenesis. Asian J Exp Biol Sci, 4, 245-50.
  69. Pandurangan AK, Ganapasam S (2013). Cytotoxic effect of luteolin on human colorectal cancer cell line (HCT-15): crucial involvement of reactive oxygen species. Middle East J Cancer, 4, 177-82.
  70. Pandurangan AK, Ganapsam G (2013). Luteolin induces apoptosis in azoxymethane-induced colon carcinogenesis through involvement of Bcl-2, bax, and caspase-3. J Chem Pharm Res, 5, 143-28.
  71. Pitot HC (1986). Fundamentals of Oncology: Newyork: Marcer Dekker, Inc.
  72. Ramos AA, Pereira-Wilson C, Collins AR (2010). Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells. Mutat Res, 692, 6-11. https://doi.org/10.1016/j.mrfmmm.2010.07.004
  73. Rao CV, Cooma I, Simi B, et al (2002). Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res, 62, 165-70.
  74. Rao CV, Kawamori T, Hamid R, et al (1999). Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor. Carcinogenesis, 20, 641-64. https://doi.org/10.1093/carcin/20.4.641
  75. Ross JA, Kasum CM (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Ann Rev Nutr, 22, 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
  76. Ruan JS, Liu YP, Zhang L, et al (2012). Luteolin reduces the invasive potential of malignant melanoma cells by targeting $\beta$3 integrin and the epithelial-mesenchymal transition. Acta Pharmacol Sin, 33, 1325-31. https://doi.org/10.1038/aps.2012.93
  77. Salib JY, Micheal HN, Esande EF (2013). Anti-diabetic properties of flavonoid compounds isolated from hyphaenethebaicaepi carp. on alloxan induced diabetic rats. Pharmacog Res, 5, 22-9. https://doi.org/10.4103/0974-8490.105644
  78. Scholz D, Horpacsy G, Mebel M (1983). Late prognosis in acute post-transplant renal failure in 102 patients. Eur Urol, 5, 14-7.
  79. Selvam S, Nagini S (1995). Administration of the plasticizer di(engl hexyl)phthalate alters glycoconjugate profile. Ind J Physiol Pharmacol, 39, 252-4.
  80. Sen U, Guha S, Chowdhury JR (1983). Serum fucosyl transferase activity and serum fucose levels as diagnostic tools in malignancy. Acta Med Okayama, 37, 457-62.
  81. Sengupta A, Ghosh S, Das S (2002). Inhibition of cell proliferation and induction of apoptosis during azoxymethane induced colon carcinogenesis by black tea. Asian Pac J Cancer Prev, 3, 41-6.
  82. Shafie NH, Esa NM, Ithnin H, et al (2013a). Preventive Inositol hexaphosphate extracted from rice bran inhibits colorectal cancer through involvement of Wnt/$\beta$-catenin and COX-2 pathways. Bio Med Res Int, 2013, 681027.
  83. Shafie NH, Esa NM, Ithnin H, et al (2013b). Pro-apoptotic effect of rice bran inositol hexaphosphate (IP6) on HT-29 colorectal cancer cells. Int J Mol Sci, 14, 23545-58. https://doi.org/10.3390/ijms141223545
  84. Sharma RA, Gescher A, Plastaras JP (2001). Cyclooxygenase-2, malondialdehyde and pyrimidopurinone adducts of deoxyguanosine in human colon cells. Carcinogenesis, 22, 1557-60. https://doi.org/10.1093/carcin/22.9.1557
  85. Sheng H, Shao J, Morrow JD (1998). Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res, 58, 362-6.
  86. Shimoi K, Okada H, Furugori M, et al (1998). Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Lett, 438, 220-4. https://doi.org/10.1016/S0014-5793(98)01304-0
  87. Somchit M, Changtam C, Kimseng R, et al (2014). Demethoxycurcumin from curcuma longa rhizome suppresses iNOS induction in an in vitro inflamed human intestinal mucosa model. Asian Pac J Cancer Prev, 15, 1807-10. https://doi.org/10.7314/APJCP.2014.15.4.1807
  88. Sriram N, Kalayrasan S, Ashokkumar P, et al (2008). Diallyl sulfide induces apoptosis in Colo 320 DM human colon cancer cells: involvement of caspase-3, NF-${\kappa}B$, and ERK. Mol Cell Biochem, 311, 157-65. https://doi.org/10.1007/s11010-008-9706-8
  89. Summart R, Chewonarin T, (2014). Purple rice extract supplemented diet reduces DMH-induced aberrant crypt foci in the rat colon by inhibition of bacterial $\beta$-glucuronidase. Asian Pac J Cancer Prev, 15, 749-55. https://doi.org/10.7314/APJCP.2014.15.2.749
  90. Sun T, Xu Z, Wu CT, et al (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L). J Food Sci, 72, 98-102.
  91. Swan DK, Ford B (1997). Chemoprevention of cancer: review of the literature. Oncol Nursing Forum, 24, 719-27.
  92. Takahashi M, Mutoh M, Kawamori T, et al (2000). Altered expression of $\beta$-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis, 21, 1319-27. https://doi.org/10.1093/carcin/21.7.1319
  93. Tammasakchai A, Reungpatthanaphong S, Chaiyasut C, et al (2012). Red strain oryza sativa-unpolished Thai rice prevents oxidative stress and colorectal aberrant crypt foci formation in rats. Asian Pac J Cancer Prev, 13, 1929-33. https://doi.org/10.7314/APJCP.2012.13.5.1929
  94. Tanaka T, Shimizu M, Kohno H, et al (2001). Chemoprevention of azoxymethane-induced rat aberrant crypt foci by dietary zerumbone isolated from zingiber zerumbet. Life Sci, 69, 1935-45. https://doi.org/10.1016/S0024-3205(01)01277-2
  95. Tang X, Wang H, Fan L, et al (2011). Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Rad Biol Med, 50, 1599-609. https://doi.org/10.1016/j.freeradbiomed.2011.03.008
  96. Thun MJ, Henley SJ, Patrono C (2002). Nonsteroidal antiinflammatory drugs as anticancer agents:mechanistic, pharmacologic, and clinical issues. J Natl Cancer Ins, 94, 252-66. https://doi.org/10.1093/jnci/94.4.252
  97. Tsujii M, DuBois RN (1995). Alteration in cellular adhesion and apoptosis in epithelial cells over expressing prostaglandin endoperoxide synthase 2. Cell, 83, 493-501. https://doi.org/10.1016/0092-8674(95)90127-2
  98. Turini ME, DuBois RN (2002). Cyclooxygenase-2: a therapeutic target. Ann Rev Med, 53, 35-57. https://doi.org/10.1146/annurev.med.53.082901.103952
  99. Upsani CD, Khera A, Balaraman R (2001). Effect of Lead and vitamin E, C orspiruline on malondialdehyde, conjugated dienes and hydroperoxides in rats. Ind J Exp Biol, 39, 70-4.
  100. Volate SR, Davenport DM, Muga SJ, et al (2005). Modulation of aberrantcrypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis, 26, 450-6.
  101. Waly MI, Ali A, Guizani N, et al (2012). Pomegranate (Punicagranatum) peel extract efficacy as a dietary antioxidant against azoxymethane-induced colon cancer in rat. Asian Pac J Cancer Prev, 13, 4051-5. https://doi.org/10.7314/APJCP.2012.13.8.4051
  102. Wang LM, Xie KP, Huo HN, et al (2012). Luteolin inhibits proliferation induced by IGF-1 pathway dependent ER$\alpha$ in human breast cancer MCF-7 cells. Asian Pac J Cancer Prev, 13, 1431-7. https://doi.org/10.7314/APJCP.2012.13.4.1431
  103. Wang TT, Wang SK, Huang GL, et al (2012a). Luteolin inducedgrowth inhibition and apoptosis of human esophageal squamous carcinoma cell line Eca109 cells in vitro. Asian Pac J Cancer Prev, 13, 5455-61. https://doi.org/10.7314/APJCP.2012.13.11.5455
  104. Wang W, Van Alstyne PC, Irons KA, et al (2004). Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr Cancer, 48, 106-14. https://doi.org/10.1207/s15327914nc4801_14
  105. Willet WC, Stampfer MJ, Colditz GA, et al (1990). Relation of meat, fat and fiber intake to the risk of colon cancer in a prospective study among women. New Eng J Med, 323, 1664-762. https://doi.org/10.1056/NEJM199012133232404
  106. Xu C, Huang MT, Shen G, et al (2006). Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res, 66, 8293-6. https://doi.org/10.1158/0008-5472.CAN-06-0300
  107. Xu T, Li D, Jiang D (2012). Targetting cell signaling and apoptotic pathways by luteolin: cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. Nutrients, 4, 2008-19. https://doi.org/10.3390/nu4122008
  108. Yagihashi N, Kasajima H, Sugai S, et al (2000). Increased in situ expression of nitric oxide synthase inhuman colorectal cancer. Virchows Arch Int J Pathol, 436, 109-14. https://doi.org/10.1007/PL00008208
  109. Yamamoto T, Suzuki T, Kobayashi A, et al (2008). Physiological significance of reactive cysteine residues of Keap 1 in determining Nrf2 activity. Mol Cell Biol, 28, 2758-70. https://doi.org/10.1128/MCB.01704-07
  110. Zhang DD (2006). Mechanistic studies of the Nrf2-keap1 signaling pathway. Drug Metab Rev, 38, 769-89. https://doi.org/10.1080/03602530600971974
  111. Zhou Q, Yan B, Hu X (2009). Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Mol Cancer Ther, 8, 1684-91. https://doi.org/10.1158/1535-7163.MCT-09-0191
  112. Zou H, Henzel WJ, Liu XS, et al (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell, 90, 405-13. https://doi.org/10.1016/S0092-8674(00)80501-2
  113. Zou X, Liu SL, Zhou JY, et al (2012). Beta-asarone induces LoVo colon cancer cell apoptosis by up-regulation of caspases through a mitochondrial pathway in vitro and in vivo. Asian Pac J Cancer Prev, 13, 5291-8. https://doi.org/10.7314/APJCP.2012.13.10.5291

Cited by

  1. Effects of Two Traditional Chinese Cooking Oils, Canola and Pork, on pH and Cholic Acid Content of Faeces and Colon Tumorigenesis in Kunming Mice vol.16, pp.15, 2015, https://doi.org/10.7314/APJCP.2015.16.15.6225
  2. Dietary Ziziphus jujuba Fruit Influence on Aberrant Crypt Formation and Blood Cells in Colitis-Associated Colorectal Cancer Mice vol.16, pp.17, 2015, https://doi.org/10.7314/APJCP.2015.16.17.7561
  3. Anti-inflammatory and proapoptotic effects of umbelliferone in colon carcinogenesis vol.35, pp.10, 2016, https://doi.org/10.1177/0960327115618245
  4. Luteolin attenuates endotoxin-induced uveitis in Lewis rats vol.78, pp.8, 2016, https://doi.org/10.1292/jvms.16-0118
  5. Therapeutic anti-inflammatory effects of luteolin on endotoxin-induced uveitis in Lewis rats vol.78, pp.8, 2016, https://doi.org/10.1292/jvms.16-0196
  6. The NRF2 transcription factor plays a dual role in colorectal cancer: A systematic review vol.12, pp.5, 2017, https://doi.org/10.1371/journal.pone.0177549
  7. Novel Structurally Related Flavones Augment Cell Death Induced by rhsTRAIL vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061211
  8. Experimental Probing and Molecular Dynamics Simulation of the Molecular Recognition of DNA Duplexes by the Flavonoid Luteolin vol.57, pp.9, 2017, https://doi.org/10.1021/acs.jcim.6b00747
  9. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds vol.69, pp.5, 2017, https://doi.org/10.1080/01635581.2017.1320415
  10. Hot infusions and risk of colorectal cancer in Uruguay: a case–control study pp.1476-5640, 2017, https://doi.org/10.1038/ejcn.2017.130
  11. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells vol.51, pp.4, 2017, https://doi.org/10.3892/ijo.2017.4091
  12. Effects of luteolin on canine osteosarcoma: Suppression of cell proliferation and synergy with cisplatin pp.00219541, 2018, https://doi.org/10.1002/jcp.27638
  13. Response of Myeloid Leukemia Cells to Luteolin is Modulated by Differentially Expressed Pituitary Tumor-Transforming Gene 1 (PTTG1) Oncoprotein vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19041173
  14. Effects of luteolin on chemical induced colon carcinogenesis in high fat diet-fed obese mouse vol.51, pp.1, 2018, https://doi.org/10.4163/jnh.2018.51.1.14