• Title/Summary/Keyword: Anti-TNF agent

Search Result 232, Processing Time 0.029 seconds

Enhancing Effect of Sorghum bicolor L. Moench (Sorghum, su-su) Extracts on Mouse Spleen and Macrophage Cell Activation (수수 추출물에 의한 마우스 비장세포 및 대식세포 활성의 항진 효과)

  • Ryu Hye-Sook;Kim Jin;Kim Hyun-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.2
    • /
    • pp.176-182
    • /
    • 2006
  • Sorghum bicolor L. Moench(Sorghum, Su-Su) is a major cereal food crop used in many parts of the world. It is used as a human food resource and folk medicines in Asia and Africa. The stem of sorghum has been used as a digestive aid and an anti-diarrheal agent. Sorghum hybrids contain high levels of diverse phenolic compounds that may provide health benefits. High levels of polyflavanols, anthocyanins, phenolic acids, and other antioxidant compounds have been reported in sorghums, which have also been shown to possess various biological activities such as anti-mutagenic, anti-carcinogenic, and HMG-CoA reductase inhibitory activities. In an in vitro experiment, we examined mice splenocyte proliferation and production of three types of cytokine($IL-1{\beta},\;IL-6,\;TNF-{\alpha}$) by peritoneal macrophages cultured with ethanol and water extracts of Sorghum bicolor L. Moench. A single cell suspension of splenocytes was prepared and the cell proliferation of the splenocytes was examined by MTT assay. The splenocyte proliferation was increased when water extracts of Sorghum bicolor L. Moench were used as supplements in all concentrations investigated. The production of cytokine($IL-1{\beta},\;IL-6,\;TNF-{\alpha}$) by activated peritoneal macrophage was detected by ELISA using the cytokine kit. $IL-1{\beta},\;IL-6,\;and\;TNF-{\alpha}$ production by activated macrophages were increased by supplementation with Sorghum bicolor L. Moench water extracts. This study suggests that supplementation of with Sorghum bicolor L. Moench water extracts may enhance immune function by regulating the splenocyte proliferation and enhancing the cytokine production by activated macrophages in vitro.

Antibacterial Activity of Herbal Complex ABHC for Development of Novel Therapeutic Agent Against Sepsis (패혈증 치료제 개발을 위한 황백이 포함된 생약혼합제제 ABHC의 항균 효능)

  • Lee, Ki Man;Lee, Geum Seon;Kim, Yu Ri;Park, Jun Woo;Boo, Kyung-Jun;Yim, Dongsool;Kang, Tae Jin
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • Sepsis, an infectious disease, is a life-threatening condition that arises when the response to infection causes injury to tissues and organs. The purpose of this study was to demonstrate whether ABHC-1 and ABHC-2, two functional extracts from herbal complex, have an anti-bacterial effect against Escherchia coli in vivo, in vitro experimental model. ABHC-1 and ABHC-2 showed the antibacterial activity against the bacteria by paper disc method. The minimum inhibitory concentration (MIC) was measured using alamar blue reagent. The MIC was shown at $60{\mu}g/ml$ from ABHC-1 and $500{\mu}g/ml$ from ABHC-2 against E. coli. We next examined the effect of ABHCs on the production of inflammatory cytokine, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), which is related to the induction of inflammation, in RAW 264.7 cell. ABHC-1 and ABHC-2 increased $TNF-{\alpha}$ production of RAW 264.7 cell in a dose-dependent manner while two extract decreased $TNF-{\alpha}$ production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell in a dose-dependent manner. At a dose of $1{\times}10^8$ E. coli. i.p., non-treated mice were succumbed, while most of mice treated with ABHC-1 were survived. Therefore, our results suggest that ABHC-1 has anti-bacterial activity and can be a novel therapeutic agent against infectious diseases.

Effect of Paeonia Lactiflora Pallas on Atopic Dermatitis-Related Inflammation in HaCaT Cell (작약이 HaCaT 세포에서 아토피 피부염 관련 염증 억제에 미치는 영향)

  • Lee, Hye-In;Kim, Eom Ji;Son, Dongbin;Joo, Byung Duk;Sohn, Youngjoo;Kim, Eun-Young;Jung, Hyuk-Sang
    • Korean Journal of Acupuncture
    • /
    • v.39 no.2
    • /
    • pp.43-53
    • /
    • 2022
  • Objectives : Paeonia lactiflora Pallas (PLP) have been reported to have pharmacological effects such as anti-inflammatory and analgesic. However, it is not yet known whether PLP extract has anti-inflammatory effect on HaCaT cells, human keratinocyte. Methods : To confirm the anti-inflammatory effect of PLP on keratinocyte, TNF-𝛼/IFN-𝛾-stimulated HaCaT cells were used. HaCaT cells were pre-treated with PLP for 1h before stimulation with TNF-𝛼/IFN-𝛾. Then HaCaT cells were stimulated with TNF-𝛼/IFN-𝛾 for 24 h, the cells and media were harvested to measure the inflammatory cytokines levels. Granulocyte-macrophage colony stimulating factor (GM-CSF), monocyte chemoattractant protein-1 (MCP-1), interleukin 1 beta (IL-1𝛽), and TNF-𝛼 were analyzed by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression of thymus and activation-regulated chemokines (TARC), IL-6, and IL-8 were measured by reverse transcription-polymerase chain reaction (RT-PCR). We also investigated the inhibitory mechanism of the mitogen-activated protein kinase (MAPKs) including ERK, JNK, and p38 and nuclear factor-kappaB (NF-𝜅B) by PLP using western blot. Results : PLP did not show cytotoxicity in HaCaT cells. In TNF-𝛼/IFN-𝛾-stimulated HaCaT cells, PLP significantly inhibited the expression of GM-CSF, MCP-1 IL-1𝛽, TNF-𝛼, TARC and IL-6. PLP inhibited the phosphorylation of ERK and translocation of NF-𝜅B into the nucleus. Conclusions : These results indicate that PLP could ameliorate the TNF-𝛼/IFN-𝛾-stimulated inflammatory response through inhibition of MAPK and NF-kB signal pathway. This suggests that PLP could be used beneficial agent to improve skin inflammation.

Anti-inflammatory Effect of Scopoletin in RAW264.7 Macrophages (대식 세포인 Raw264.7 cell에서 scopoletin의 항염증 효과)

  • Lee, Su-Gyeong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1377-1383
    • /
    • 2015
  • Scopoletin is a component of several plant such as Erycibe obtusifolia, Aster tataricus, Foeniculum vulgare and Brunfelsia grandiflora. It was reported to have anti-angiogenesis and anti-allergy effects. In this study, the anti-inflammatory effect of scopoletin was investigated in Raw264.7 cells, mouse macrophages. The effects of scopoletin on phagocytosis and nitric oxide (NO) production were investigated in lipopolysaccharide (LPS)-induced inflammatory responses. It was observed that scopoletin exerted inhibitory effects on both phagocytosis and NO production. In addition, scopoletin decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) which were related to NO and prostaglandin E2 (PGE2) production. In particular, the expression of pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The expression levels of IL-1β, IL-6 were remarkably decreased by treatment with scopoletin. Furthermore, the content of TNFα produced by macrophage was decreased in the presence of scopoletin at 8 hr. These results indicate that the anti-inflammatory effect of scopoletin could exert by inhibiting the expression of pro-inflammatory cytokines in Raw264.7 cells stimulated with LPS. The above results suggest scopoletin could be a new remedial agent for anti-inflammation through inhibition of iNOS, COX-2, IL-1β, IL-6 and TNF-α expressions as well as supression of phagocytosis and NO production.

Inhibitory Effect of Bee Venom Toxin on Lung Cancer NCI H460 Cells Growth Through Induction of Apoptosis via Death Receptor Expressions

  • Hur, Keun Young;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.1
    • /
    • pp.121-130
    • /
    • 2014
  • Objectives : I investigated whether bee venom inhibit cell growth through enhancement of death receptor expressions in the human lung cancer cells, NCI-H460. Methods : Bee venom(1-5 ${\mu}g/ml$) inhibited the growth of NCI-H460 lung cancer cells by the induction of apoptotic cell death in a dose dependent manner. Results : Consistent with apoptotic cell death, expression of TNF-R1, TNF-R2, FAS, death receptors(DR) 3, 4, 5 and 6 was increased in the cells. Expression of DR downstream pro-apoptotic proteins including Caspase-8, -3, -9 was upregulated and Bax was concomitantly overwhelmed the expression of Bcl-2. NF-kB were inhibited by treatment with bee venom in NCI-H460 cells through TNF response change led by TNF-R1 and TNF-R2. Conclusions : These results suggest that bee venom should exert anti-tumor effect through induction of apoptotic cell death in NCI-H460 human lung cancer cells via enhancement of death receptor expression, and that bee venom could be a promising agent for preventing and treating lung cancer.

Immunomodulatory activity of phytoprotein isol Acanthopanax senticosus : Regulation of CTL responses and activation of macrop

  • Lee Seok Won;Lee Soo Jin;Park Jeon Ran;Kim Ha na;Ahn Kyoo Seok;Kim Jung-Hyo;Baek Nam-in;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.230-235
    • /
    • 2004
  • We previously reported that the phytoprotein extracted from Acanthopanax senticosus (PA) had anti-carcinogenic anti-metastatic activity via increase of inhibition of gap junctional intercellular communication. In the present study investigated the immunomodulatory mechanism of phytoprotein isolated from the stem bark of Acanthopanax sentic (PA). PA was found to significantly stimulate macrophages producing TNF-α and IL-1β in vitro. It also showed tumori activity indicating that PA had the ability to stimulate macrophage directly. Moreover, PA induced the CDB/sup +/ CTL cy responses to recognize antigen on the B16-BL6 melanoma cells. Treatment of PA with B16-BL6 melanoma cells increased the proliferation of splenocytes compared with untreated control. These results demonstrate that PA immunomodulatory activity suggesting a useful anti-tumor agent applicable to treatment and prevention of cancer.

The Anti-Inflammatory Effects of NeiShuHuangLianTang In Experi-mental Animals (內疎黃連湯의 消炎效果에 관한 實驗的 硏究)

  • Ahn, Jong-hyun;Sim, Sung-yong;Kim, Kyung-jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.3
    • /
    • pp.8-17
    • /
    • 2004
  • Objective: Under recognition of the similarity between carbuncle in Oriental medicine and inflammatory disease, NeiShuHuangLianJang(N.H.) has been used as an antiphlogistic agent. The present reports shows the anti-inflammatory effects of N.H. Method: Experimental animals made use of 4-5 weeks age(weight 20-25g) ICR(male)mouse. They were farmed individually in a temperature($22{\pm}0.5{\circ}$) and light(06:00 to 18:00 h) controlled room with free access to water and food. The N.H.(1.0g/kg, 3.0g/kg) extracted from NeiShuHuangLianTang were administered intragastrically prior to LPS I.P injection. we measured WBC count, IL-6 level in plasma and TNF-${\alpha}$ level in plasma. Result : 1. N.H. suppressed inflammatory reaction induced by LPS. 2. N.H. suppressed WBC count in inflammatory reaction induced by LPS. 3. N.H. suppressed 1L-6 level in inflammatory reaction induced by LPS. According to above experiments, N.H. was improved its suppression effect against the inflammatory reaction through WBC count and IL-6 level. So N.H. which is used for the inflammatory disease(carbuncle) in Oriental Medicine is assumed to have a curative effects against this disease by controlling WBC count and IL-6 level in plasma.

  • PDF

In Vitro Anti-Inflammatory and Skin Protective Effects of Codium fragile Extract on Macrophages and Human Keratinocytes in Atopic Dermatitis

  • A-yeong Jang;JeongUn Choi;Weerawan Rod-in;Ki Young Choi;Dae-Hee Lee;Woo Jung Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.940-948
    • /
    • 2024
  • Codium fragile has been traditionally used in oriental medicine to treat enterobiasis, dropsy, and dysuria, and it has been shown to possess many biological properties. Atopic dermatitis (AD) is one of the types of skin inflammation and barrier disruption, which leads to chronic inflammatory skin diseases. In the current investigation, the protective effects of C. fragile extract (CFE) on anti-inflammation and skin barrier improvement were investigated. In LPS-stimulated RAW 264.7 cells, nitric oxide generation and the expression levels of interleukin (IL)-1β, IL-4, IL-6, iNOS, COX-2, and tumor necrosis factor-alpha (TNF)-α were reduced by CFE. CFE also inhibited the phosphorylation of NF-κB-p65, ERK, p-38, and JNK. Additionally, CFE showed inhibitory activity on TSLP and IL-4 expression in HaCaT cells stimulated with TNF-α/interferon- gamma (IFN-γ). Enhanced expression of factors related to skin barrier function, FLG, IVL, and LOR, was confirmed. These findings implied that CFE may be used as a therapeutic agent against AD due to its skin barrier-strengthening and anti-inflammatory activities, which are derived from natural marine products.

Anti-Inflammatory Effects and Cytoprotective Effects of Smilacis Chinae Radix (토복령의 항염증 및 세포보호 효과에 미치는 영향)

  • Lee, Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Smilacis Chinae Radix has been used as an anti-inflammatory agent. This study was performed to anti-inflammatory and MAP kinase signaling pathway in vitro. Experimental studies were obtained by measuring the Cytotoxicity, production of NO, PGE2, TNF-$\alpha$ and protein level of catalase, SOD, MAP kinase, The results were summarized as follows: Smilacis Chinae Radix was not cytotoxic effects against Raw264.7 and HEK293 cells. Concentration of $100{\mu}g/m{\ell}$ Smilacis Chinae Radix inhibited the production of NO in the Raw264.7 cell stimulated with LPS. All concentrations of Smilacis Chinae Radix not significantly inhibited the production of PGE2 in the Raw264.7 cell stimulated with LPS. All concentrations of Smilacis Chinae Radix did not inhibit the production of TNF-$\alpha$ in the Raw264.7 cell stimulated with LPS. Smilacis Chinae Radix has not effect of blocking NF-${\kappa}B$ into nucleus in LPS-induced macrophage Raw264.7 cell. Smilacis Chinae Radix has the effect of Cytoprotection through activation of ERK and inhibition of p38 and JNK. Accordingly the results show Smilacis Chinae Radix could induce anti-inflammation and Cytoprotection effects against In vitro, but it needs more research on the precise mechanism of such effects.

Effects of Mix-1 on Anti-CD40 Antibody and Recombinant IL4- Induced Cytokine Production and Immunoglobulin E in Highly Purified Mouse B Cells

  • Kim Jung Hwan;Choi Sun Mi;Lee Yong Gu;Namgoong Uk;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1869-1880
    • /
    • 2004
  • In the oriental medicine, a mixture of herbs has been commonly used as important components to control allergic and inflammatory diseases. In the present study, we prepared a mixture of Dictamni Radicis Cortex(Baiksunpee), Houttuyniae Herba(Uhsungcho), and Aurantii Immaturus Fructus(Jisil) to examine its anti-allergic effects in activated mouse splenic cells and found that Mix-1 is involved in regulating levels of B cell activating factors (CD23 and CD11a), IL-1β, IL-6, IL-10, TNF-α, and 1gE as well as HRF expression. It was observed that Mix-1 did not have cytotoxic effects on mLFC. Mix-1 showed inhibition of CD23 and CD11 alpaha expression in mouse B cells, and also decreased the production of IL-6, TNF-α, and 1gE. Both RT-PCR and ELISA analyses indicated that IL-6 and TNF alpha production were regulated at the gene expression level. In contrast, IL-10 mRNA and protein levels were increased in activated B cells by Mix-1 treatment. We also found that Mix-1 inhibited B cell proliferation and inhibited histamine releasing factor(HRF) expression, suggesting its inhibitory effect on histamine secretion. These data indicated that Mix-1 has an anti-allergic effect in activated macrophages and further suggest the possible application of Mix-1 as a therapeutic agent for the treatment of allergy-related diseases.