Immunomodulatory activity of phytoprotein isol Acanthopanax senticosus : Regulation of CTL responses and activation of macrop

  • Lee Seok Won (Department of Oncology, Graduate School of East-West Medical Science, Kyunghee University) ;
  • Lee Soo Jin (Department of Physiology, College of Oriental Medicine, Sangji University) ;
  • Park Jeon Ran (Department of Oncology, Graduate School of East-West Medical Science, Kyunghee University) ;
  • Kim Ha na (Department of Oncology, Graduate School of East-West Medical Science, Kyunghee University) ;
  • Ahn Kyoo Seok (Department of oriental pathology, Oriental Medical College, Kyunghee University) ;
  • Kim Jung-Hyo (Chosun Nursing College) ;
  • Baek Nam-in (School of Biotechnology and Plant Metabolism Research Center, Kyunghee University) ;
  • Kim Sung Hoon (Department of Oncology, Graduate School of East-West Medical Science, Kyunghee University)
  • Published : 2004.02.01

Abstract

We previously reported that the phytoprotein extracted from Acanthopanax senticosus (PA) had anti-carcinogenic anti-metastatic activity via increase of inhibition of gap junctional intercellular communication. In the present study investigated the immunomodulatory mechanism of phytoprotein isolated from the stem bark of Acanthopanax sentic (PA). PA was found to significantly stimulate macrophages producing TNF-α and IL-1β in vitro. It also showed tumori activity indicating that PA had the ability to stimulate macrophage directly. Moreover, PA induced the CDB/sup +/ CTL cy responses to recognize antigen on the B16-BL6 melanoma cells. Treatment of PA with B16-BL6 melanoma cells increased the proliferation of splenocytes compared with untreated control. These results demonstrate that PA immunomodulatory activity suggesting a useful anti-tumor agent applicable to treatment and prevention of cancer.

Keywords

References

  1. Vaccine v.18 no.27 Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses Apostolopoulos, V.;Barnes, N.;Pietersz, G.A.;McKenzie, I.F. https://doi.org/10.1016/S0264-410X(00)00090-6
  2. Cancer Res v.54 no.4 In vitro generation of human cytolytic T-cells specific for peptides derived from the HER-2/neu protooncogene protein Disis, M.L.;Smith, J.W.;Murphy, A.E.;Chen, W.;Cheever, M.A.
  3. Blood v.91 no.12 The role of tumor necrosis factor alpha in modulating the quantity of peripheral blood-derived, cytokine-driven human dendritic cells and its role in enhancing the quality of dendritic cell function in presenting soluble antigens to CD4+ T cells in vitro Chen, B.;Shi, Y.;Smith, J.D.;Choi, D.;Geiger, J.D.;Mule, J.J.
  4. Infect Immun v.69 no.6 Human peripheral blood T cells, monocytes, and macrophages secrete macrophage inflammatory proteins 1alpha and 1beta following stimulation with heat-inactivated Brucella abortus Zaitseva, M.;King, L.R.;Manischewitz, J.;Dougan, M.;Stevan, L.;Golding, H.;Golding, B. https://doi.org/10.1128/IAI.69.6.3817-3826.2001
  5. Cancer Res v.45 no.10 Macrophages and metastasis--a biological approach to cancer therapy Fidler, I.J.
  6. Ciba Found Symp v.141 Macrophage therapy of cancer metastasis Fidler, I.J.
  7. Cancer Immunol Immunother v.45 no.2 Restoration of macrophage tumoricidal activity by bleomycin correlates with the decreased production of transforming growth factor beta in rats bearing KDH-8 hepatoma cells Yuan, L.;Kobayashi, M.;Kuramitsu, Y.;Li, Y.;Matsushita, K.;Hosokawa, M. https://doi.org/10.1007/s002620050404
  8. Eur J Immunol v.27 no.9 Priming of cytotoxic T lymphocytes by five heat-aggregated antigens in vivo: conditions, efficiency, and relation to antibody responses Speidel, K.;Osen, W.;Faath, S.;Hilgert, I.;Obst, R.;Braspenning, J.;Momburg, F.;Hammerling, G.J.;Rammensee, H.G. https://doi.org/10.1002/eji.1830270938
  9. Immunol Lett v.86 no.3 A dynamical perspective of CTL cross-priming and regulation: implications for cancer immunology Wodarz, D.;Jansen, V.A. https://doi.org/10.1016/S0165-2478(03)00023-3
  10. J Immunol v.168 no.4 Proteasome-assisted identification of a SSX-2-derived epitope recognized by tumor-reactive CTL infiltrating metastatic melanoma Ayyoub, M.;Stevanovic, S.;Sahin, U.;Guillaume, P.;Servis, C.;Rimoldi, D.;Valmori, D.;Romero, P.;Cerottini, J.C.;Rammensee, H.G.;Pfreundschuh, M.;Speiser, D.;Levy, F. https://doi.org/10.4049/jimmunol.168.4.1717
  11. Mem Inst Oswaldo Cruz v.86 no.Sup. 2 Immunomodulating Chinese herbal medicines Li, X.Y. https://doi.org/10.1590/S0074-02761991000600036
  12. Immunopharmacol Immunotoxicol v.12 no.2 Panax ginseng as a potential immunomodulator: studies in mice Kim, J.Y.;Germolec, D.R.;Luster, M.I. https://doi.org/10.3109/08923979009019672
  13. J Ethnopharmacol v.79 no.3 Effect of Acanthopanax senticosus stem on mast cell-dependent anaphylaxis Yi, J.M.;Hong, S.H.;Kim, J.H.;Kim, H.K.;Song, H.J.;Kim, H.M. https://doi.org/10.1016/S0378-8741(01)00403-2
  14. Int J Immunopharmacol v.13 no.5 Immunomopharmacological effects of polysaccharides from Acanthopanax senticosus on experimental animals Shen, M.L.;Zhai, S.K.;Chen, H.L.;Luo, Y.D.;Tu, G.R.;Ou, D.W. https://doi.org/10.1016/0192-0561(91)90075-I
  15. Planta Med v.69 no.7 In vivo anti-inflammatory and antinociceptive effects of liriodendrin isolated from the stem bark of Acanthopanax senticosus Jung, H.J.;Park, H.J.;Kim, R.G.;Shin, K.M.;Ha, J.;Choi, J.W.;Kim, H.J.;Lee, Y.S.;Lee, K.T. https://doi.org/10.1055/s-2003-41127
  16. Oncol Rep v.7 no.6 Induction of apoptosis by Acanthopanax senticosus HARMS and its component, sesamin in human stomach cancer KATO III cells Hibasami, H.;Fujikawa, T;Takeda, H.;Nishibe, S.;Satoh, T.;Fujisawa, T.;Nakashima, K.
  17. J Biol Chem v.257 no.22 Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe) Olsnes, S.;Stripe, F.;Sandvig, K.;Pihl, A.
  18. Jpn J Cancer Res v.89 no.2 Oral administration of a Kampo (Japanese herbal) medicine Juzen-taiho-to inhibits liver metastasis of colon 26-L5 carcinoma cells Ohnishi, Y.;Fujii, H.;Hayakawa, Y.;Sakukawa, R.;Yamaura, T.;Sakamoto, T.;Tsukada, K.;Fujimaki, M.;Nonome, S.;Komatsu, Y.;Saiki, I. https://doi.org/10.1111/j.1349-7006.1998.tb00550.x
  19. Cell v.54 no.6 Introduction of soluble protein into the class I pathway of antigen processing and presentation Moore, M.W.;Carbone, F.R.;Bevan, M.J. https://doi.org/10.1016/S0092-8674(88)91043-4
  20. J Leukoc Biol v.49 no.5 Tumor-derived products induce IL-1 a, IL-1 b, TNF $\gamma$, and IL-6 gene expression in murine macrophages: distinctions between tumor- and bacterial endotoxin-induced gene expression Evans, R.;Kamdar, S.J.;Duffy, T.M. https://doi.org/10.1002/jlb.49.5.474
  21. Int J Immunopharmacol v.10 no.5 Low molecular weight immunopotentiators Ruszala-Mallon, V.;Lin, Y.I.;Durr, F.E.;Wang, B.S. https://doi.org/10.1016/0192-0561(88)90066-5
  22. Med Sci Monit v.9 no.1 Experimental studies of serum cytokine concentration following pancreatic electrolytic ablation Morrison, C.P.;Teague, B.D.;Court, F.G.;Wemyss-Holden, S.A.;Metcalfe, M.S.;Dennison, A.R.;Maddern, G.J.
  23. Pathol Oncol Res v.3 no.2 Serum Levels of IL-1b, IL-6, TNF-a, sTNF-RI and CRP in Patients with Oral Cavity Cancer Jablonska, E.;Piotrowski, L.;Grabowska, Z. https://doi.org/10.1007/BF02907807
  24. J Exp Med v.175 no.1 Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection Silva, J.S.;Morrissey, P.J.;Grabstein, K.H.;Mohler, K.M.;Anderson, D.;Reed, S.G. https://doi.org/10.1084/jem.175.1.169
  25. Infect Immun v.64 no.7 Interleukin-12-mediated resistance to Trypanosoma cruzi is dependent on tumor necrosis factor alpha and gamma interferon Hunter, C.A.;Slifer, T.;Araujo, F.
  26. Curr Opin Immunol v.4 no.3 Cell-mediated cytotoxicity Taylor, M.K.;Cohen, J.J. https://doi.org/10.1016/0952-7915(92)90086-T
  27. J Exp Med v.187 no.12 Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: A novel pathway of autocrine macrophage activation Munder, M.;Mallo, M.;Eichmann, K.;Modolell, M. https://doi.org/10.1084/jem.187.12.2103
  28. Cancer Res v.48 no.11 Immunoregulatory effects of interleukin 2 and interferon on syngeneic murine malignant glioma-specific cytotoxic T-lymphocytes Yamasaki, T.;Kikuchi, H.;Yamashita, J.;Handa, H.;Kuwata, S.;Taguchi, M.;Namba, Y.;Nanaoka, M.
  29. J Immunol v.166 no.2 Regulation of the CTL response by macrophage migration inhibitory factor Abe, R.;Peng, T.;Sailors, J.;Bucala, R.;Metz, C.N. https://doi.org/10.4049/jimmunol.166.2.747
  30. J Immunol v.143 no.6 Accessory signals in murine cytolytic T cell responses. Dual requirement for IL-1 and IL-6 Renauld, J.C.;Vink, A.;Van Snick, J.
  31. J Exp Med v.173 no.2 Combined interleukin 1/interleukin 2 therapy of mice injected with highly metastatic Friend leukemia cells: host antitumor mechanisms and marked effects on established metastases Ciolli, V.;Gabriele, L.;Sestili, P.;Varano, F.;Proietti, E.;Gresser, I.;Testa, U.;Montesoro, E.;Bulgarini, D.;Mariani, G.(et al) https://doi.org/10.1084/jem.173.2.313
  32. J Exp Med v.161 no.5 Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 Rosenberg, S.A.;Mule, J.J.;Spiess, P.J.;Reichert, C.M.;Schwarz, S.L. https://doi.org/10.1084/jem.161.5.1169
  33. Ann N Y Acad Sci v.795 Interleukin-12: murine models of a potent antitumor agent Brunda, M.J.;Luistro, L.;Rumennik, L.;Wright, R.B.;Wigginton, J.M.;Wiltrout, R.H.;Hendrzak, J.A.;Palleroni, A.V. https://doi.org/10.1111/j.1749-6632.1996.tb52676.x
  34. Cancer Res v.50 no.17 Antitumor effects of alpha-interferon and gamma-interferon on a murine renal cancer (Renca) in vitro and in vivo Sayers, T.J.;Wiltrout, T.A.;McCormick, K.;Husted, C.;Wiltroul, R.H.
  35. Int J Cancer v.37 no.1 Interferon-activated tumor inhibition in vivo. Small amounts of interferon-gamma inhibit tumor growth by eliciting host systemic immunoreactivity Giovarelli, M.;Cofano, F.;Vecchi, A.;Forni, M.;Landolfo, S.;Forni, G. https://doi.org/10.1002/ijc.2910370122
  36. Cancer Immunol Immunother v.26 no.3 Antitumor effect of recombinant tumor necrosis factor-alpha against murine sarcomas at visceral sites: tumor size influences the response to therapy Mule, J.J.;Asher, A.;Mclntosh, J.;Lafreniere, R.;Lefor, A.;Reichert, C.M.;Rosenberg, S.A.