• Title/Summary/Keyword: Anisotropic wet etching

Search Result 42, Processing Time 0.028 seconds

Fabrication of a (100) Silicon Master Using Anisotropic Wet Etching for Embossing

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.645-648
    • /
    • 2005
  • To fabricate a (100) silicon hard master, we used anisotropic wet etching for the embossing. The etching chemical for the sili­con wafer was a TMAH 25$\%$ solution. The anisotropic wet etching produces a smooth sidewall surface inclined at 54.7°, and the surface roughness of the fabricated master is about 1 nm. After spin coating an organic-inorganic sol-gel hybrid resin on a silicon substrate, we used the fabricated master to form patterns on the silicon substrate. Thus, we successfully obtained patterns via the hot embossing technique with the (100) silicon hard master. Moreover, by using a single hydrophobic surface treatment of the master, we succeeded in achieving uniform surface roughness of the embossed patterns for more than ten embossments.

Fabrication of Hollow-type Silicon Microneedle Array Using Microfabrication Technology (반도체 미세공정 기술을 이용한 Hollow형 실리콘 미세바늘 어레이의 제작)

  • Kim, Seung-Kook;Chang, Jong-Hyeon;Kim, Byoung-Min;Yang, Sang-Sik;Hwang, In-Sik;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2221-2225
    • /
    • 2007
  • Hollow-type microneedle array can be used for painless, continuous and stable drug delivery through a human skin. The needles must be sharp and have sufficient length in order to penetrate the epidermis. An array of hollow-type silicon microneedles was fabricated by using deep reactive ion etching and HNA wet etching with two oxide masks. Isotropic etching was used to create tapered tips of the needles, and anisotropic etching of Bosch process was used to make the extended length and holes of microneedles. The microneedles were formed by three steps of isotropic, anisotropic, and isotropic etching in order. The holes were made by one anisotropic etching step. The fabricated microneedles have $170{\mu}m$ width, $40{\mu}m$ hole diameter and $230{\mu}m$ length.

Multi-mode Planar Waveguide Fabricated by a (110) Silicon Hard Master

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1106-1110
    • /
    • 2005
  • We fabricated (110) silicon hard master by using anisotropic wet etching for embossing. The etching chemical for the silicon wafer was a TMAH $25\%$ solution. The anisotropic wet etching produces a smooth sidewall surface and the surface roughness of the fabricated master is about 3 nm. After spin coating an organic-inorganic sol-gel hybrid material on a silicon substrate, we employed hot embossing technique operated at a low pressure and temperature to form patterns on the silicon substrate by using the fabricated master. We successfully fabricated the multi-mode planar optical waveguides showing low propagation loss of 0.4 dB/cm. The surface roughness of embossed patterns was uniform for more than 10 times of the embossing processes with a single hydrophobic surface treatment of the silicon hard master.

Design of Single-wafer Wet Etching Bath for Silicon Wafer Etching (실리콘 웨이퍼 습식 식각장치 설계 및 공정개발)

  • Kim, Jae Hwan;Lee, Yongil;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.77-81
    • /
    • 2020
  • Silicon wafer etching in micro electro mechanical systems (MEMS) fabrication is challenging to form 3-D structures. Well known Si-wet etch of silicon employs potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH). However, the existing silicon wet etching process has a fatal disadvantage that etching of the back side of the wafer is hard to avoid. In this study, a wet etching bath for 150 mm wafers was designed to prevent back-side etching of silicon wafer, and we demonstrated the optimized process recipe to have anisotropic wet etching of silicon wafer without any damage on the backside. We also presented the design of wet bath for 300 mm wafer processing as a promising process development.

Photoelectrochemical Hydrogen Production on Textured Silicon Photocathode

  • Oh, Il-Whan
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.191-195
    • /
    • 2011
  • Wet chemical etching methods were utilized to conduct Si surface texturing, which could enhance photoelectrochemical hydrogen generation rate. Two different etching methods tested, which were anisotropic metal-catalyzed electroless etching and isotropic etching. The Si nano-texture that was fabricated by the anisotropic etching showed ~25% increase in photocurrent for H2 generation. The photocurrent enhancement was attributed to the reduced reflection loss at the nano-textured Si surface, which provided a layer of intermediate density between water and the Si substrate.

Fabrication of (100), (110), (111) Si Tips using Various Wet Etching Method (다양한 습식식각법을 이용한 (100), (110), (111) Si tip의 제작)

  • Park, Heung-Woo;Ju, Byeong-Kwon;Ko, Chang-Gi;Hong, Soon-Kwan;Oh, Myoung-Hwan;Kim, Chui-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1250-1253
    • /
    • 1994
  • (100), (110) and (111) Si wafers are etched by isotropic etching method, anisotropic etching method using KOH etchant and EPW etchant and combined two-step etching method to compare the results. Isotopic etching method is effective in fabrication of wedge-shaped tips, especially (110) Si. Anisotropic etching method of (100) Si using EPW etchant can fabricate sharp cone-shaped tips and isotropic etching after anisotropic etching of (100) Si can fabricate wedge-shaped tips.

  • PDF

Anisotropic Wet Etching of Single Crystal Silicon for Formation of Membrane Structure (멤브레인 구조 제작은 위한 단결정 실리콘의 이방성 습식 식각)

  • 조남인;강창민
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.37-40
    • /
    • 2003
  • We have studied micro-machining technologies to fabricate parts and sensors used in the semiconductor equipment. The studies were based on the silicon integrated circuit processes, and composed of the anisotropic etching of single crystal silicon to fabricate a membrane structure for hot and cold junctions in the infrared absorber. KOH and TMAH were used as etching solutions for the anisotropic wet etching for membrane structure formation. The etching characteristic was observed for the each solution, and etching rate was measured depending upon the temperature and concentration of the etching solution. The different characteristics were observed according to pattern directions and etchant concentration. The pattern was made to incline $45^{\circ}$ on the primary flat, and optimum etching property was obtained in the case of 30 wt% and $90^{\circ}C$ of KOH etching solution for the formation of the membrane structure.

  • PDF

The Improved Characteristics of Wet Anisotropic Etching of Si with Megasonic Wave (Megasonic wave를 이용한 실리콘 이방성 습식 식각의 특성 개선)

  • Che Woo-Seong;Suk Chang-Gil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.81-86
    • /
    • 2004
  • A new method to improve the wet etching characteristics is described. The anisotropic wet-etching of (100) Si with megasonic wave has been studied in KOH solution. Etching characteristics of p-type (100) 6 inch Si have been explored with and without megasonic irradiation. It has been observed that megasonic irradiation improves the characteristics of wet etching such as an etch uniformity and surface roughness. The etching uniformity on the whole wafer with and without megasonic irradiation were less than ${\pm}1\%$ and more than $20\%$, respectively. The initial root-mean-square roughness($R_{rms}$) of single crystal silicon is 0.23 nm. It has been reported that the roughnesses with magnetic stirring and ultrasonic agitation were 566 nm and 66 nm, respectively. Comparing with the results, etching with megasonic irradiation achieved the Rrms of 1.7 nm on the surface after the $37{\mu}m$ of etching depth. Wet etching of silicon with megasonic irradiation can maintain nearly the original surface roughness after etching process. The results have verified that the megasonic irradiation is an effective way to improve the etching characteristics such as etch uniformity and surface roughness.

  • PDF

fabrication of the Large Area Silicon Mirror for Slim Optical Pickup Using Micromachining Technology (미세가공기술을 이용한 초소형 광픽업용 대면적 실리콘 미러 제작)

  • Park Sung-Jun;Lee Sung-Jun;Choi Seog-Moon;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fabrication of the large area silicon mirror is accomplished by anisotropic wet etching using micromachining technology for implementation of integrated slim optical pickup and the process condition is also established for improving the mirror surface roughness. Until now, few results have been reported about the production of highly stepped $9.74^{\circ}$ off-axis-cut silicon wafers using wet etching. In addition rough surface of the mirror is achieved in case of tong etching time. Hence a novel method called magnetorheolocal finishing is applied to enhance the surface quality of the mirror plane. Finally, areal peak to valley surface roughness of mirror plane is reduced about 100nm in large area of $mm^2$ and it is applicable to optical pickup using infrared wavelength.

Anisotropic Wet-Etching Process of Si Substrate for Formation of Thermal Vias in High-Power LED Packages (고출력 LED 패키지의 Thermal Via 형성을 위한 Si 기판의 이방성 습식식각 공정)

  • Yu, B.K.;Kim, M.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.51-56
    • /
    • 2012
  • In order to fabricate through-Si-vias for thermal vias by using wet etching process, anisotropic etching behavior of Si substrate was investigated as functions of concentration and temperature of TMAH solution in this study. The etching rate of 5 wt%, 10 wt%, and 25 wt% TMAH solutions, of which temperature was maintained at $80^{\circ}C$, was $0.76{\mu}m/min$, $0.75{\mu}m/min$, and $0.30{\mu}m/min$, respectively. With changing the temperature of 10 wt% TMAH solution to $20^{\circ}C$ and $50^{\circ}C$, the etching rate was reduced to $0.067{\mu}m/min$ and $0.233{\mu}m/min$, respectively. Through-Si-vias of $500{\mu}m$-depth could be fabricated by etching a Si substrate for 5 hours in 10 wt% TMAH solution at $80^{\circ}C$ after forming same via-pattern on each side of the Si substrate.