Browse > Article
http://dx.doi.org/10.5229/JKES.2011.14.4.191

Photoelectrochemical Hydrogen Production on Textured Silicon Photocathode  

Oh, Il-Whan (Korea Advanced Nanofabrication Center)
Publication Information
Journal of the Korean Electrochemical Society / v.14, no.4, 2011 , pp. 191-195 More about this Journal
Abstract
Wet chemical etching methods were utilized to conduct Si surface texturing, which could enhance photoelectrochemical hydrogen generation rate. Two different etching methods tested, which were anisotropic metal-catalyzed electroless etching and isotropic etching. The Si nano-texture that was fabricated by the anisotropic etching showed ~25% increase in photocurrent for H2 generation. The photocurrent enhancement was attributed to the reduced reflection loss at the nano-textured Si surface, which provided a layer of intermediate density between water and the Si substrate.
Keywords
Silicon texturing; Metal-catalyzed electroless etching; Photoelectrochemistry; Hydrogen evolution reaction; Solar water splitting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, 'Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication', Sol. Ener. Mat. Sol. Cells, 92, 960, (2008).   DOI
2 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, 'Enhanced thermoelectric performance of rough silicon nanowires', Nature, 451, 163, (2008).   DOI
3 A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. Yang, 'Single Crystalline Mesoporous Silicon Nanowires', Nano Lett., 9, 3550, (2009).   DOI
4 K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, 'Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry', Adv. Mat., 14, 1164, (2002).   DOI
5 Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, and X. Duan, 'Electrically Conductive and Optically Active Porous Silicon Nanowires', Nano Lett., 9, 4539, (2009).   DOI
6 M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, and N.-B. Wong, 'Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching', J.Phys. Chem. C, 112, 4444, (2008).   DOI
7 X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, and X. Duan, 'Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires', ACS App. Mat. Inter., 3, 261, (2011).   DOI
8 D. C. Bookbinder, N. S. Lewis, M. G. Bradley, A. B. Bocarsly, and M. S. Wrighton, 'Photoelectrochemical reduction of N,N'-dimethyl-4,4'-bipyridinium in aqueous media at p-type silicon: sustained photogeneration of a species capable of evolving hydrogen', J. Am. Chem. Soc., 101, 7721, (1979).   DOI
9 A. B. Bocarsly, D. C. Bookbinder, R. N. Dominey, N. S. Lewis, and M. S. Wrighton, 'Photoreduction at illuminated p-type semiconducting silicon photoelectrodes. Evidence for fermi level pinning', J. Am. Chem. Soc., 102, 3683, (1980).   DOI
10 D. C. Bookbinder, J. A. Bruce, R. N. Dominey, N. S. Lewis, and M. S. Wrighton, 'Synthesis and characterization of a photosensitive interface for hydrogen generation: Chemically modified p-type semiconducting photocathodes', Proc. Nat. Acad. Sci., 77, 6280, (1980).   DOI
11 P. Campbell and M. A. Green, 'Light trapping properties of pyramidally textured surfaces', J. App. Phys., 62, 243, (1987).   DOI
12 Y. Nakato, Y. Egi, M. Hiramoto, and H. Tsubomura, 'Hydrogen evolution and iodine reduction on an illuminated n-p junction silicon electrode and its application to efficient solar photoelectrolysis of hydrogen iodide', J. Phys. Chem., 88, 4218, (1984).   DOI
13 S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, 'Energyconversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes', Science, 327, 185, (2010).   DOI
14 J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, 'Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting', Ener. Env. Sci., 4, 1690, (2011).   DOI
15 B. Gonzalez-Diaz, R. Guerrero-Lemus, B. Diaz-Herrera, N. Marrero, J. Mendez-Ramos, and D. Borchert, 'Optimization of roughness, reflectance and photoluminescence for acid textured mc-Si solar cells etched at different HF/$HNO_{3}$ concentrations', Mat. Sci. Eng.: B, 159-160, 295, (2009).   DOI
16 A. J. Bard and M. A. Fox, 'Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen', Acc. Chem. Res., 28, 141, (1995).   DOI
17 J. A. Turner, 'Sustainable Hydrogen Production', Science, 305, 972, (2004).   DOI   ScienceOn
18 A. Heller, 'Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells', Acc. Chem. Res., 14, 154, (1981).   DOI
19 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, 'Solar Water Splitting Cells', Chem. Rev., 110, 6446, (2010).   DOI   ScienceOn
20 A. Luque and S. Hegedus, Eds., Handbook of photovoltaic science and engineering, John Wiley & Sons, West Sussex, (2003).