• Title/Summary/Keyword: Animal disease model

Search Result 450, Processing Time 0.024 seconds

Development of a model for animal health monitoring system in Gyeongnam I. Design, data and frequencies of selected dairy cattle diseases

  • Kim, Jong-shu;Kim, Yong-hwan;Choi, Min-cheol;Kim, Gon-sup;Kim, Chung-hui;Park, Jeong-hee;Hah, Dae-sik;Heo, Jung-ho;Jeong, Myeong-ho;An, Dong-won
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.730-737
    • /
    • 1999
  • A national animal health monitoring system(NAHMS) in Gyeongnam area was started from 1997 to develop statistically valid data for use in estimating disease frequencies in dairy cattle, and the associated costs. The objectives of this study were to : (1) discribe what was done to implement and maintain the system in Gyeongnam ; (2) present selected disease frequencies ; (3) discuss the epidemiological consideration of what was done and implications for the results obtained. Veterinary Medical Officers(VMOs-professors and graduate students from Gyeongsang National University, Faculty of Gyeongnam Livestock Promotion Institute, and Clinic veterinarians) served as data collectors. After training on current disease and management problems of dairy cattle, interview techniques, sampling methods, and data collection instruments, the VMOs participated in selection of the sample herds and data gathering. Forty of 167 dairy herds were selected randomly and the VMOs visited farms once a month for 12 months to collect data about management, disease, inventory, production, preventive treatment, financial and any other relevant data. Strict data quality control devices were used. Specific feed-back was developed for the producers and data collectors. Of the three age groups studied, cows had the greatest number of disease problems. The six disorders found most frequently were (from the highest to the lowest) breeding problems, clinical mastitis, birth problems, gastrointestinal problems. metabolic problems, and lameness. In young stock, respiratory, multiple system, breeding problems, and gastrointestinal problems were pre dominant, whereas in calves, gastrointestinal, respiratory, and integumental problems were major.

  • PDF

Review of the Antioxidant Effect of Herbal Material in In Vivo Parkinson's Disease Models (파킨슨병 in vivo 모델에서 한약재 및 기능성 식품의 항산화 효과에 대한 고찰)

  • Lee, Gi-hyang;Jeon, Sang-woo;Jeong, Min-jeong;Kim, Hong-jun;Jang, In-soo
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.993-1014
    • /
    • 2020
  • Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Antioxidant stress and inflammatory reactions are important causes of neurodegenerative diseases and are major causes of PD. Many animal experiments have been aimed at treating PD using the antioxidant effects of various traditional medicines and dietary supplements. This review reports the research investigating the antioxidant effects of herbs in in vivo PD models. Methods: The study consisted of a database search for articles related to PD and herbal treatments using the OASIS, NDSL, KTKP, Korean KISS, PubMed, Science Direct, CNKI, Wanfang, and J-STAGE databases. The search period was limited from the start of the search engine application to November 14, 2019. Studies were selected to confirm the antioxidant effects of herbal medicines in an in vivo PD model. Results: Eighty-two studies were summarized for plant species, extracts (or compounds), animal models, neurotoxins, and functional results. The most frequently used herbal materials were Bacopa monnieri, Camellia sinensis, Centella asiatica, and Withania somnifera. MPTP and 6-OHDA were the most commonly used neurotoxins for inducing PD. Most studies confirmed an increased expression and activation of antioxidant enzymes and a decrease in oxidative stress. Herbal materials showed their antioxidant effects regardless of the order of treatment and confirmed their possible use as treatments for the prevention and treatment of neurodegeneration. Conclusion: Many herbal medicines have antioxidant effects and are likely to be effective in delaying neurodegenerative damage by inhibiting or reducing oxidative stress by expression of antioxidant enzymes.

Novel Disease Model of Chronic Neutrophilic Leukemia

  • Seo, Byoung-Boo;Min, Sung-Hun;Lee, Eun-Ji;Ryoo, Zae-Young;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.421-425
    • /
    • 2011
  • The experimental manipulation of protooncogenes and their gene products is a valuable research tool for the study of human neoplasia. In this study, the recently identified human cervical cancer protooncogene (HccR-2) was expressed in transgenic mice under the control of the tetracycline regulatory system. The phenotype observed was similar in many respects to human chronic neutrophilic leukemia (CNL). Thus, the HccR-2 transgenic mouse model is important not only for investigating the biological properties of the HccR-2 protooncogene in vivo, but also for analyzing the mechanisms involved in the progression of CNL.

Blood-brain barrier-on-a-chip for brain disease modeling and drug testing

  • Cui, Baofang;Cho, Seung-Woo
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.213-219
    • /
    • 2022
  • The blood-brain barrier (BBB) is an interface between cerebral blood and the brain parenchyma. As a gate keeper, BBB regulates passage of nutrients and exogeneous compounds. Owing to this highly selective barrier, many drugs targeting brain diseases are not likely to pass through the BBB. Thus, a large amount of time and cost have been paid for the development of BBB targeted therapeutics. However, many drugs validated in in vitro models and animal models have failed in clinical trials primarily due to the lack of an appropriate BBB model. Human BBB has a unique cellular architecture. Different physiologies between human and animal BBB hinder the prediction of drug responses. Therefore, a more physiologically relevant alternative BBB model needs to be developed. In this review, we summarize major features of human BBB and current BBB models and describe organ-on-chip models for BBB modeling and their applications in neurological complications.

Poly (ADP-ribose) in the pathogenesis of Parkinson's disease

  • Lee, Yunjong;Kang, Ho Chul;Lee, Byoung Dae;Lee, Yun-Il;Kim, Young Pil;Shin, Joo-Ho
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.424-432
    • /
    • 2014
  • The defining feature of Parkinson's disease is a progressive and selective demise of dopaminergic neurons. A recent report on Parkinson's disease animal model demonstrates that poly (ADP-ribose) (PAR) dependent cell death, also named parthanatos, is accountable for selective dopaminergic neuronal loss. Parthanatos is a programmed necrotic cell death, characterized by PARP1 activation, apoptosis inducing factor (AIF) nuclear translocation, and large scale DNA fragmentation. Besides cell death regulation via interaction with AIF, PAR molecule mediates diverse cellular processes including genomic stability, cell division, transcription, epigenetic regulation, and stress granule formation. In this review, we will discuss the roles of PARP1 activation and PAR molecules in the pathological processes of Parkinson's disease. Potential interaction between PAR molecule and Parkinson's disease protein interactome are briefly introduced. Finally, we suggest promising points of therapeutic intervention in the pathological PAR signaling cascade to halt progression in Parkinson's disease.

Factors Influencing the Efficiency of In Vitro Embryo Production in the Pig

  • Lin, Tao;Lee, Jae Eun;Shin, Hyun Young;Oqani, Reza K.;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • v.39 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • Pigs are considered an ideal source of human disease model due to their physiological similarities to humans. However, the low efficiency of in vitro embryo production (IVP) is still a major barrier in the production of pig offspring with gene manipulation. Despite ongoing advances in the associated technologies, the developmental capacity of IVP pig embryos is still lower than that of their in vivo counterparts, as well as IVP embryos of other species (e.g., cattle and mice). The efficiency of IVP can be influenced by many factors that affect various critical steps in the process. The previous relevant reviews have focused on the in vitro maturation system, in vitro culture conditions, in vitro fertilization medium, issues with polyspermy, the utilized technologies, etc. In this review, we concentrate on factors that have not been fully detailed in prior reviews, such as the oocyte morphology, oocyte recovery methods, denuding procedures, first polar body morphology and embryo quality.

Ever Increasing Number of the Animal Model Systems for Attention Deficit/Hyperactivity Disorder: Attention, Please

  • Kim, Hee-Jin;Park, Seung-Hwa;Kim, Kyeong-Man;Ryu, Jong-Hoon;Cheong, Jae-Hoon;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.312-319
    • /
    • 2008
  • Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by hyperactivity, inattention, and impulsiveness. Current estimates suggest that 4-12% of school age children are affected by ADHD, which hampers proper social relationship and achievements in school. Even though the exact etiology of the disorder is still in the middle of active investigation, the availability of pharmacological treatments for the disorder suggest that at least the symptoms of ADHD are manageable. To develop drugs with higher efficacy and fewer side effects, it is essential to have appropriate animal models for in vivo drug screening processes. Good animal models can also provide the chances to improve our understanding of the disease processes as well as the underlying etiology of the disorder. In this review, we summarized current animal models used for ADHD research and discussed the point of concerns about using specific animal models.

Improvements in Cognitive and Motor Function by a Nutrient Delivery System Containing Sialic Acid from Edible Bird's Nest (제비집 시알산 유래 영양전달체(Nutrient Delivery System)의 인지기능 및 운동기능 개선 효과)

  • Kim, Dong-Myong;Jung, Ju-Yeong;Lee, Hyung-Kon;Kwon, Yong-Seong;Baek, Jin-Hong;Han, In Suk
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.614-623
    • /
    • 2020
  • The objective of this study was to produce a nutrient delivery system (NDS) using sialic acid extracted from edible bird's nest (EBN), which improves brain function in patients with Alzheimer's disease and Parkinson's disease, by affinity bead technology (ABT). The inhibitory activity of acetylcholinesterase (AChE) and pyramidal cells in the dentate gyrus of the hippocampus were analyzed to investigate the effect of a sialic acid NDS on Alzheimer's disease. Also, the effect of a sialic acid NDS on Parkinson's disease was evaluated by rota-rod test and pole test in an animal model. Among the groups treated with donepezil, EBN, and sialic acid NDS, the AChE activity was the lowest in the sialic acid NDS-treated group. The results of the hippocampus analysis of the rat model confirmed that the sialic acid NDS inhibited amyloid-beta accumulation depending upon the concentration. Also, the sialic acid NDS group showed more improvement in motor deterioration than the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced group in both the rota-rod test and pole test. Therefore, the sialic acid NDS had an effect of protecting not only Alzheimer's disease by inhibiting AChE and amyloid-beta accumulation, but Parkinson's disease by preventing neurotoxicity induced by MPTP.

Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis

  • Hongming Lv;Yvxi He;Jingjing Wu; Li Zhen ;Yvwei Zheng
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2023
  • Background: Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. Objectives: This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. Methods: In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4℃) for three hours per day for three weeks. Results: CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stressinvolved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. Conclusions: These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.

Genetical and Pathological Studies on the Mutant Mice as an Animal Model for Deafness Disease

  • Lee, Jeong-Woong;Lee, Eun-Ju;Lee, Hoon-Taek;Chung, Kil-Saeng;Ryoo, Zae-Young
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.48-48
    • /
    • 2001
  • A new neurological mutant has been found in the ICR outbred strain mouse. Affected mice display profound deafness and a head-tossing and bidirectional circling behavior, showing an autosomal recessive mode of inheritance. It was, therefore, named cir/Kr with the gene symbol cir. The auditory tests identified clearly the hearing loss of the cir mice when compared to wild type mice. Pathological studies confirmed the developmental defects in the middle ear, cochlea, cochlear nerve, and semicircular canal areas, which were correlated to the abnormal behavior observed in the cir mice. Thus, cir mice may be useful as a model for studying inner ear abnormalities and deafness. We have constructed a genetic linkage map by positioning 14 microsatellite markers across the (cir) region and intraspecific backcross between cir and C57BL/6J mice. The cir mouse harbors an autosomal recessive mutation on mouse chromosome 9. The cir gene was mapped to a region between D9Mit116 and D9Mit38 Estimated distances between cir and D9Mit116, and between cir and D9Mit38 are 0.7 and 0.2 cM, respectively. The gene in order was defines : centromere-D9Mit182-D9Mit51/D9Mit79/D9Mit310-D9Mit212/D9Mit184-D9Mit116-cir-D9Mit38-D9Mit20-D9Mit243-D9Mit16-D9Mit55/D9Mit125-D9Mit281. The mouse map location of the cir locus appears to be in a region homologous to human 3q21. Our present date suggest that the nearest flanking marker D9Mit38 provides a useful anchor for the isolation of the cir gene in a yeast artificial chromosome contig.

  • PDF