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INTRODUCTION       

The pig is regarded as the best candidate species for 
xenotransplantation and transgenic animal-based crea-
tion of human-relevant proteins, largely because pigs 
are anatomically and physiologically similar to humans. 
They also have the benefits of offering a short gesta-
tion time, being inexpensive and easy to raise, etc. (Jin 
et al., 2003; Ahn et al., 2011). Numerous modifications 
have been used to optimize the efficiency of in vitro 
embryo production (IVP) in pigs. However, the de-
velopmental capacity of IVP porcine embryos remains 
extremely low compared to their in vivo-produced 
counterparts and in vitro produced embryos of other 
species (Dang-Nguyen et al., 2011). This is because the 
existing in vitro culture system is suboptimal for por-
cine embryos, which are generally more sensitive than 
the embryos of other domestic animals (Dang- Nguyen 
et al., 2011; Lee et al., 2013). A variety of factors acting 
on multiple steps in the process can influence the 
efficiency of porcine IVP. This review focuses on some 
of these factors, particularly those that have been large-
ly overlooked in the previous reviews. The topics add-

ressed include the cumulus-oocyte-complex (COC) mor-
phology, oocyte recovery method, denuding procedure, 
morphology of the first polar body, and relationship 
between embryo quality and culture duration. 

FOLLICLE DIAMETER

Porcine oocytes are usually recovered from antral fo-
llicles on the ovary surface. Their diameters are often 
classified as < 3 mm, 3～6 mm, and > 6 mm, and the 
relationship between follicle diameter and developmen-
tal competence has been widely studied inpigs(Wu et 
al., 2006; Bagg et al., 2007; Kwak et al., 2014). These 
studies have consistently demonstrated that oocytes 
derived from small follicles (< 3 mm) possess lower 
maturation and developmental competences than those 
derived from larger follicles (≥ 3 mm). When perform-
ing oocyte collection, therefore, researchers have typi-
cally recovered porcine oocytes from antral follicles ha-
ving diameters of 3～6 mm. However, a recent study 
showed that oocytes recovered from follicles > 8 mm 
in diameter required 18 hours to complete their matu-
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ABSTRACT
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ration in vitro, and had a higher developmental com-
petence than those isolated from 3～7 mm follicles 
(Kwak et al., 2014).

COC MORPHOLOGY 

COC morphology is a criterion for evaluating oocyte 
quality. COCs are generally classified according to the 
number of cumulus cell layers: Class I oocytes have 
five or more layers of cumulus cells; Class II oocytes 
have three to five layers of cumulus cells; Class III 
oocytes have one to two layers of cumulus cells; and 
Class IV oocytes are either denuded or have a partial 
cumulus cell layer. Class I and II COCs are considered 
good quality, whereas Class III and IV COCs are con-
sidered poor quality. In a human oocyte study exa-
mining the relationship between COC morphology and 
the developmental capacity of the embryo, Sato (Sato et 
al., 2007) reported that COC morphology did not 
influence the oocyte maturation rate, but the post-in 
vitro fertilization (IVF) blastocyst formation rate was 
significantly higher in the good morphology group 
compared to the poor morphology group. In pig and 
ovine embryo studies, oocytes with poor morphology 
(i.e., one or two layers of cumulus cells) showed dec- 
reased rates of meiotic resumption and cytoplasmic 
maturation (Alvarez et al., 2009; Dadashpour Davachi et 
al., 2012). Oocytes with poor morphology do not un-
dergo complete maturation, perhaps because they secre-
te insufficient maturation factors. We have recently 
found that poor morphology COCs failed to undergo 
proper in vitro maturation in pigs. However, the co-cul-
ture of oocytes with both good and poor morphology 
oocytes greatly improved the utilization rate of the 
latter, which showed no reduction in maturation or 
subsequent developmental capacity (our unpublished 
data).

OOCYTE RECOVERY METHOD

The availability of sufficient oocytes is a precondition 
for successful IVP, because only 30% of recovered em-
bryos typically develop into blastocysts (Davachi et al., 
2012). Thus, oocyte recovery is an important compo-
nent of the IVP process, which can include in vitro 
maturation (IVM), IVF, somatic cell nuclear transfer 
(SCNT), intracytoplasmic sperm injection (ICSI), etc. 
Although oocytes are most often recovered from antral 
follicles on the ovarian surface, they may also be coll-
ected from live animals using the ovum pickup (OPU) 

technique or multiple-ovulation protocol. In livestock, 
the recovery rate of oocytes from antral follicles is very 
poor because most of the follicles on the ovary surface 
are small, early follicles [follicles < 3 mm in diameter 
are considered early antral follicles; (Wu et al., 2006)]. 
To obtain numerous high quality oocytes from follicles 
on the ovarian surface, various oocyte recovery me-
thods have been developed, including aspiration, slic-
ing and centrifuge methods (Arav, 2001; Wang et al., 
2007; Davachi et al., 2012). The IVM preantral follicle 
strategy can provide a large number of oocytes for IVP 
procedures (Wu et al., 2001; Hirao et al., 2013; Mochida 
et al., 2013; Tasaki et al., 2013), and isolation methods 
and culture systems for preantral follicles have been 
developed in various species, including mice, cattle, 
pigs, horses, dogs, cats, camels, buffalos, etc. (Gupta 
and Nandi, 2012).   

IVM OF OOCYTES

Efficient IVM, which involves both nuclear and cy-
toplasmic maturation, is essential for the successful 
production of live animals via IVP. During oocyte ma-
turation, cumulus cells can maintain the meiotic block 
at the germinal vesicle (GV) stage or trigger the resum-
ption of meiosis by secreting appropriate factors (Xia et 
al., 2000; Tanghe et al., 2002; Dang-Nguyen et al., 2011). 
One remarkable sign of oocyte nuclear maturation is 
the extrusion of the first polar body (PB1); however, 
extrusion of PB1 does not ensure a normal chromo-
some number in the resultant embryo, because some 
aneuploid oocytes can extrude PB1 (Dang-Nguyen et 
al., 2011). Despite oocytes with visible PB1s in vitro, 
they show a reduced development capacity compared 
with their in vivo matured counterparts (Dang- Nguyen 
et al., 2011), suggesting poor cytoplasmic maturation is 
thought to be mainly responsible for the low deve-
lopmental capacity of post-parthenogenetic activation 
(PA), post-IVF and post-SCNT]. Numerous factors can 
affect the cytoplasmic maturation of pig IVM oocytes. 
Reactive oxygen species (ROS) and intracellular levels 
of glutathione (GSH) critically affect oocyte maturation 
and the subsequent developmental capacity of the em-
bryo following PA, IVF, and SCNT. More specifically, 
the cytoplasmic maturation of oocytes is improved by 
downregulation of ROS and upregulation of GSH 
(Kobayashi et al., 2006; You et al., 2010; Kwak et al., 
2012a). The distribution of cortical granules (CGs) is 
also considered to be a very important marker for the 
completion of cytoplasmic maturation in oocytes (Zh-
ang et al., 2010; Biswas and Hyun, 2011; Dey et al., 
2012). IVM porcine oocytes that fail to complete proper 
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cytoplasmic maturation often contain abnormal micro-
tubules; this can influence the formation of the spindle, 
leading to aberrant chromosomal segregation after fer-
tilization and reducing the ability of the embryos to 
develop to the blastocyst stage (Ueno et al., 2005; Miao 
et al., 2009; Zhang et al., 2010).

DENUDING PROCEDURES

Oocytes derived from IVM must undergo a denu-
ding procedure prior to being manipulated for IVP. Vor-
texing, pipetting and pre-denuding are the main me-
thods (Lin et al., 2015). Porcine embryos are generally 
more fragile and sensitive than those of other domestic 
animals, and vigorous denuding procedures can injure 
or even destroy porcine oocytes. Our previous study in 
porcine oocytes (Lin et al., 2015) indicated that vorte-
xing or pipetting were the superior denuding methods 
for PA or IVF, while oocyte enucleation (pre-denuding) 
was preferable for SCNT. Furthermore, we found that 
the utilized denuding procedure not only had the po-
tential to damage the oocyte, it also affected the po-
sition of the first polar body with respect to the nu-
clear materials, the spindle morphology, and the CG 
distribution.

MORPHOLOGY OF THE FIRST POLAR BODY

The relationship between the morphology of PB1 and 
the fertilization rate and/or quality of the generated 
embryo has been widely studied in the context of 
human assisted reproduction techniques (Navarro et al., 
2009; Younis et al., 2009), but there is limited infor-
mation available with respect to porcine embryo deve-
lopment. The quality of porcine oocytes can be eva-
luated based on the morphology of PB1. PB1 can be 
classified into five morphological categories (Lin et al., 
2013): Grade I, round or ovoid PB1 with an intact 
smooth membrane; Grade 2, round or ovoid PB1 with 
an intact membrane; Grade 3, broken PB1 with a small 
PB1 fragment; Grade 4, broken PB1 with a large PB1 
fragment; and Grade 5, fully fragmented PB1. Oocytes 
with Grade 1 or 2 PB1 are considered to be good qua-
lity. In our laboratory, porcine oocytes with differences 
in PB1 morphology were found to yield embryos with 
different levels of developmental competence. We iden-
tified simple criteria for PB1 morphology that could be 
used to rapidly choose good-quality oocytes, in the 
hopes of improving the efficiency of porcine SCNT. 

The formation rates and cell numbers of blastocysts 
were significantly higher after porcine SCNT of the good- 
PB1-morphology group compared to the poor-PB1-mor-
phology group (our unpublished data).

EMBRYO CULTURE MEDIUM AND 
CONDITIONS

Embryo culture media can be classified as defined 
(protein-free), semi-defined (albumin added) and unde-
fined (serum added). Porcine IVP systems most often 
use NCSU-23, PZM-3 and TCM199 media, which have 
large proportions of serum or albumin. Although se-
rum can provide some beneficial factors (e.g., proteins, 
growth factors, vitamins, amino acids, etc.), it also con-
tains embryotoxic factors (Camargo et al., 2006). Thus, 
many researchers use bovine serum albumin (BSA) to 
provide amino acid substrates for embryonic metabo-
lism (Orsi and Leese, 2004). In efforts to improve the 
in vitro developmental potential and quality of porcine 
oocytes, many laboratories have added chemical su-
pplements and/or changed the osmolarity of the IVM 
medium (Hwang et al., 2007; Naruse et al., 2007a; Na-
ruse et al., 2007b; Biswas et al., 2011; Nguyen et al., 
2011; Wu et al., 2011; Kwak et al., 2012a; Lin et al., 
2014). It is widely accepted that the optimal incubation 
conditions for in vitro culture of porcine embryos in-
clude a temperature under 38.5 or 39℃, and air con-
taining 5% CO2.

RELATIONSHIP BETWEEN EMBRYO 
QUALITY AND CULTURE TIME

The frequency of apoptosis (Hao et al., 2004; Fabian 
et al., 2005), the total cell numbers in blastocysts (in-
cluding the inner cell mass and trophectoderm cells) 
(VanSoom et al., 1996), and the blastocyst diameter 
(Hazeleger et al., 2000; Kidson et al., 2004; Hao et al., 
2006) are usually used to judge embryo quality. Por-
cine embryos were reported to have more nuclei on 
Days 7 and 8 of culture versus Days 5 and 6 of cul-
ture, but the rates of apoptosis were significantly hi-
gher in Day 7 and 8 blastocysts versus Day 5 and 6 
blastocysts (Hao et al., 2003; 2004). Usually, blastocysts 
with larger diameters have more nuclei than smaller 
blastocysts, whereas larger embryos tend to show more 
apoptosis (Kidson et al., 2004). In a recent study, we 
found that porcine PA blastocysts derived from a 
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group with delayed blastulation and smaller diameters 
also exhibited higher rates of apoptosis (our unpubli- 
shed adta).

IN VITRO FERTILIZATION 

In vitro fertilization, during which mature oocytes 
are fertilized by sperm in a lab, is a complex series of 
procedures used to circumvent fertility or genetic pro-
blems. However, IVF embryos frequently suffer from 
polyspermy due to the rapid (and often simultaneous) 
sperm penetration that can occur during the co-culture 
of oocytes with an overabundance of sperm in a small 
drop of IVF medium (Dang-Nguyen et al., 2011). The 
sperm concentration and duration of IVF must the-
refore be controlled in order to ensure acceptably high 
rates of fertilization and monospermy (Dang-Nguyen et 
al., 2011). 

Various procedures have been used to prevent po-
lyspermic penetration in IVF systems. Sperm penetrate 
between 3 and 6 h after insemination, and the inci-
dence of polyspermic penetration increases with the 
co-culture duration (Funahashi et al., 2000). Although 
numerous laboratories have incubated gametes for ～6 
h, reduction of the co-incubation time from 6 to 3 h 
was shown to decrease the polyspermy rate without 
changing the male pronucleus (MPN) formation rate, 
the penetration rate or the overall production efficiency 
of normal embryos by IVP (Kazuhiro Kikuchi et al., 
2006). In the pig, successful penetration with a low in-
cidence of polyspermy has been achieved by incu-
bating oocytes with sperm for 20 min at 39℃ in an 
atmosphere containing 5% CO2 and 95% air, and then 
washing the oocytes and incubating them without spe-
rm for an additional 5 to 6 h (Kwak et al., 2012a; 
Kwak et al., 2012b).

The presence of cumulus cells is essential for oocyte 
IVM, fertilization and embryo development (Tanghe et 
al., 2002; Wongsrikeao et al., 2004; Li et al., 2006; Jeon 
et al., 2011). In cattle, cumulus-cell-free oocytes repor-
tedly showed a reduced fertilization rate in an IVF 
system (Fatehi et al., 2002). In addition, cumulus cells 
are known to play important roles in fertilization and 
MPN formation in IVM oocytes (Kikuchi et al., 1993). 
However, Dang-Nguyen et al. found that the removal 
of cumulus cells prior to IVF did not reduce the pe-
netration rate when using frozen sperm (Dang-Nguyen 
et al., 2011).

PARTHENOGENETIC ACTIVATION 

Oocyte activation comprises a series of processes that 
occur in the oocyte during fertilization. In mammals, 
oocyte activation may be caused by the entry of sperm, 
which triggers the release of calcium into the oocyte, 
or by artificial stimulation. Artificial (parthenogenetic) 
activation of oocytes is a critical step in the SCNT pro-
cedure. PA embryos resemble IVF embryos during the 
early stages of development, are relatively easy to crea-
te, and are associated with fewer ethical problems than 
IVF embryos; thus, PA embryos are often used as a 
model system for investigating in vitro culture condi-
tions (Gupta et al., 2008; Zhang et al., 2012a). 

Numerous methods have been used to induce PA 
(Somfai et al., 2006; Juhi Pathak et al., 2013), including 
mechanical stimulation, electrical pulses, ultrasound, 
chemicals (e.g., calcium ionophores, or calcium iono-
phores plus cycloheximide and the protein phosphory-
lation inhibitor, 6-dimethylaminopurine), etc. The iono-
phore-mediated activation of oocytes is a simple me-
thod that does not require expensive equipment, but 
the activation efficiency and the developmental capacity 
of the activated oocytes tend to be low (Sedmikova et 
al., 2003). Most often, electrical pulses have been used 
to activate reconstructed embryos for porcine SCNT 
procedures. 

Oocyte activation relies on the elevation of intrace-
llular calcium; this alters the activity levels of matu-
ration promoting factor (MPF) and cytostatic factor, 
which are responsible for the meiotic block at meta-
phase II (Hashimoto and Kishimoto, 1988). After elec-
trical pulse stimulation, an influx of extracellular cal-
cium ions increases intracellular calcium. Ionophore   
treatment, in contrast, induces the release of calcium 
from internal deposits to generate a single large spike 
in the intracellular calcium level. These increases in in-
tracellular calcium trigger several calcium-dependent 
proteolytic pathways, leading to the destruction of cyc-
lin B, a reduction in MPF activity, and the resump- 
tion of meiosis (Juhi Pathak et al., 2013). Thus, PA 
methods increase intracellular calcium levels in oocytes 
by releasing calcium from cytoplasmic stores or all-
owing the entry of extracellular calcium. This mimics 
the activating calcium spike seen when an oocyte is 
penetrated by a spermatozoon during the fertilization 
process. 

SOMATIC CELL NUCLEAR TRANSFER 

SCNT has been successfully applied to variety of are-
as, including agricultural research, biotechnology, ge-
netic conservation and medical science. Since the first 
cloned animal, Dolly, was created by a SCNT-based 
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method, live cloned offspring have been produced 
from cattle, mice, goats, sheep, pigs, dogs, cats, rabbits 
and horses (Campbell et al., 2007a). SCNT was first 
reported in 1996 (Campbell et al., 1996a; b), but the 
first SCNT-based cloned pig was not reported until 
2000 (Onishi et al., 2000; Polejaeva et al., 2000). These 
results indicated that, production cloned pig by SCNT 
method is more difficult than other animals. Although 
pigs have been cloned by somatic cell nuclear transfer 
method, the overall efficiency of SCNT is still very low 
due to poor in vitro and in vivo embryo development. 
The reason of low efficiency of SCNT is still unclear, 
although decades of work trying to finding this pro-
blem. Lots of factors influence the efficiency of SCNT, 
including animal species, the source of the recipient 
oocytes, the donor cell type, the protocol used to treat 
the donor cells prior to SCNT, the utilized PA method 
and the embryo culture conditions. Complications are 
also possible, such as donor cell losses, reprogramming 
failure, placental abnormalities, maternal inheritance of 
the mitochondrial NDA, and trophoblastic defects (Lai 
and Prather, 2004; Lin et al., 2011; Ogura et al., 2013).

Many researchers have attempted to improve the effi-
ciency of SCNT by optimizing the operational proce-
dures (e.g., the enucleation, fusion and activation me-
thods) (Li et al., 2004; Campbell et al., 2007b; Keefer, 
2008; Song et al., 2011). In addition, handmade cloning, 
which is an easy, inexpensive alternative for SCNT, has 
been successfully applied to several species, including 
pigs, cattle, and sheep (Vajta, 2007; Zhang et al., 2012b; 
Zhang et al., 2013). Chemical supplementation of the 
embryo culture medium has been extensively exami-
ned, with many studies seeking to improve cloning 
efficiency by using histone deacetylase (HDAC) inhibi-
tors [e.g., trichostatin A (TSA), scriptaid, sodium buty-
rate and valproic acid] to induce histone acetylation 
(Zhao et al., 2009; Zhao et al., 2010; Diao et al., 2013; 
Song et al., 2014), thereby improving the epigenetic re-
programming of donor nuclei in developing recon-
structed embryos. However, the reprogramming effici-
ency of HDAC inhibitors is often dependent on the 
animal species (Song et al., 2014).

IN SUMMARY

IVP is an important tool for the study of animal 
embryology and the propagation of mammalian spe-
cies. The IVP-based generation of transgenic pigs is par-
ticularly interesting because such animals could po-
tentially provide organs for human transplantation. Al-
though the use of IVP is still limited by various ba-
rriers, future advances should enable IVP technology to 

better serve the needs of agriculture, biotechnology, me-
dicine and our human community.
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