DOI QR코드

DOI QR Code

Review of the Antioxidant Effect of Herbal Material in In Vivo Parkinson's Disease Models

파킨슨병 in vivo 모델에서 한약재 및 기능성 식품의 항산화 효과에 대한 고찰

  • Lee, Gi-hyang (Dept of Internal Medicine, College of Korean Medicine, Woo-Suk University) ;
  • Jeon, Sang-woo (Dept of Internal Medicine, College of Korean Medicine, Woo-Suk University) ;
  • Jeong, Min-jeong (Dept of Pediatrics, College of Korean Medicine, Woo-Suk University) ;
  • Kim, Hong-jun (Dept of Prescription, College of Korean Medicine, Woo-Suk University) ;
  • Jang, In-soo (Dept of Internal Medicine, College of Korean Medicine, Woo-Suk University)
  • 이기향 (우석대학교 한의과대학 한방내과학교실) ;
  • 전상우 (우석대학교 한의과대학 한방내과학교실) ;
  • 정민정 (우석대학교 한의과대학 소아과학교실) ;
  • 김홍준 (우석대학교 한의과대학 방제학교실) ;
  • 장인수 (우석대학교 한의과대학 한방내과학교실)
  • Received : 2020.10.17
  • Accepted : 2020.12.21
  • Published : 2020.12.30

Abstract

Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Antioxidant stress and inflammatory reactions are important causes of neurodegenerative diseases and are major causes of PD. Many animal experiments have been aimed at treating PD using the antioxidant effects of various traditional medicines and dietary supplements. This review reports the research investigating the antioxidant effects of herbs in in vivo PD models. Methods: The study consisted of a database search for articles related to PD and herbal treatments using the OASIS, NDSL, KTKP, Korean KISS, PubMed, Science Direct, CNKI, Wanfang, and J-STAGE databases. The search period was limited from the start of the search engine application to November 14, 2019. Studies were selected to confirm the antioxidant effects of herbal medicines in an in vivo PD model. Results: Eighty-two studies were summarized for plant species, extracts (or compounds), animal models, neurotoxins, and functional results. The most frequently used herbal materials were Bacopa monnieri, Camellia sinensis, Centella asiatica, and Withania somnifera. MPTP and 6-OHDA were the most commonly used neurotoxins for inducing PD. Most studies confirmed an increased expression and activation of antioxidant enzymes and a decrease in oxidative stress. Herbal materials showed their antioxidant effects regardless of the order of treatment and confirmed their possible use as treatments for the prevention and treatment of neurodegeneration. Conclusion: Many herbal medicines have antioxidant effects and are likely to be effective in delaying neurodegenerative damage by inhibiting or reducing oxidative stress by expression of antioxidant enzymes.

Keywords

References

  1. Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson J, et al. Harrison's principles of internal medicine. 17th Edition. Vol II. New York: Mcgraw-hill Medical; 2008, p. 3063-72.
  2. Lee KD, Kim KJ, Park YK. Protective effects of Celastrol, the Triterpenoid component of Celastrus Orbiculatus, on dopaminergic neuronal cells in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrideine-le sioned Parkinson's disease rats. J Korean Oriental Med 2008;29(4):94-103.
  3. Donley S, McGregor S, Wielinski C, Nance M. Use and perceived effectiveness of complementary therapies in Parkinson's disease. Parkinsonism Relat Disord 2019;58:46-9. https://doi.org/10.1016/j.parkreldis.2018.08.003
  4. Park YC, Jang I, Lee YH, Park DS. The study on the effect of acupuncture treatment in patients with idiopathic Parkinson's disease. Journal of Acupuncture Research 2007;24(4):43-54.
  5. Lim SY, Kim HR, Chou YS, Lee I. Review of current clinical studies for herbal medicine of Parkinson's disease in traditional Chinese medicine. J Physiol & Pathol Korean Med 2016;30(5):327-37. https://doi.org/10.15188/kjopp.2016.10.30.5.327
  6. Doo AR, Kim SN, Park JY, Cho KH, Hong J, Kim EK, et al. Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo. J Ethnopharmacol 2010;131(2):433-42. https://doi.org/10.1016/j.jep.2010.07.008
  7. Kim IJ, Lee JH, Song KJ, Koo BS, Kim GW. Neuroprotective effects of Sohaphwangwon essential oil in a Parkinson's disease mouse model. J of Oriental Neuropsychiatry 2012;23(1):129-43. https://doi.org/10.7231/JON.2012.23.1.129
  8. Song JX, Sze SC, Ng TB, Lee CK, Leung GP, Shaw PC, et al. Anti-Parkinsonian drug discovery from herbal medicines: What have we got form neurotoxic models? J Ethnopharmacol 2012;139(3):698-711. https://doi.org/10.1016/j.jep.2011.12.030
  9. Joo HS, Yu OC, Yang KJ, Lee SY, Moon HY. A review on experimental studies of Parkinson's disease in Korean medical journals. Journal of Oriental Neuropsychiatry 2017;28(3):145-59. https://doi.org/10.7231/jon.2017.28.3.145
  10. Rabiei Z, Solati K, Amini-Khoei H. Phytotherapy in treatment of Parkinson's disease: a review. Pharm Biol 2019;57(1):355-62. https://doi.org/10.1080/13880209.2019.1618344
  11. Li XZ, Zhang SN, Lu F, Liu CF, Wang Y, Bai Y, et al. Cerebral metabonomics study on Parkinson's disease mice treated with extract of Acanthopanax senticosus harms. Phytomedicine 2013;20(13):1219-29. https://doi.org/10.1016/j.phymed.2013.06.002
  12. Liu SM, Li XZ, Zhang SN, Yang ZM, Wang KX, Lu F, et al. Acanthopanax senticosus protects structure and function of mesencephalic mitochondria in a mouse model of Parkinson's disease. Chin J Integr Med 2018;24(11):835-43. https://doi.org/10.1007/s11655-018-2935-5
  13. Beppe GJ, Dongmo AB, Foyet HS, Dimo T, Mihasan M, Hritcu L. The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala. BMC Complement Altern Med 2015;15:374. https://doi.org/10.1186/s12906-015-0912-0
  14. Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W, Hutamekalin P, Sroyraya M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement Altern Med 2018;18(1):103. https://doi.org/10.1186/s12906-018-2166-0
  15. Kumar A, Christian PK, Panchal K, Guruprasad BR, Tiwari AK. Supplementation of Spirulina(Arthrospira platensis) improves lifespan and locomotor activity in Paraquat-sensitive DJ-1 β(Δ93) flies, a Parkinson's disease model in Drosophila melanogaster. J Diet Suppl 2017;14(5):573-88. https://doi.org/10.1080/19390211.2016.1275917
  16. Araujo DP, Nogueira PCN, Santos ADC, Costa RO, Lucena JD, Gadelha-Filho CVJ, et al. Aspidosperma pyrifolium Mart: neuroprotective, antioxidant and anti-inflammatory effects in a Parkinson's disease model in rats. J Pharm Pharmacol 2018;70(6):787-96. https://doi.org/10.1111/jphp.12866
  17. Li H, Shi R, Ding F, Wang H, Han W, Ma F, et al. Astragalus Polysaccharide suppresses 6-hydroxydopamine-induced neurotoxicity in Caenorhabditis elegans. Oxid Med Cell Longev 2016;2016:4856761.
  18. Shobana C, Kumar RR, Sumathi T. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study. Cell Mol Neurobiol 2012;32(7):1099-112. https://doi.org/10.1007/s10571-012-9833-3
  19. Subramanian P, Prasanna V, Jayapalan JJ, Abdul Rahman PS, Hashim OH. Role of Bacopa monnieri in the temporal regulation of oxidative stress in clock mutant(cryb) of Drosophila melanogaster. J Insect Physiol 2014;65:37-44. https://doi.org/10.1016/j.jinsphys.2014.04.005
  20. Singh B, Pandey S, Verma R, Ansari JA, Mahdi AA. Comparative evaluation of extract of Bacopa monnieri and Mucuna pruriens as neuroprotectant in MPTP model of Parkinson's disease. Indian J Exp Biol 2016;54(11):758-66.
  21. Singh B, Pandey S, Yadav SK, Verma R, Singh SP, Mahdi AA. Role of ethanolic extract of Bacopa monnieri against 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice model via inhibition of apoptotic pathways of dopaminergic neurons. Brain Res Bull 2017;135:120-8. https://doi.org/10.1016/j.brainresbull.2017.10.007
  22. Krishna G, Hosamani R, Muralidhara. Bacopa monnieri supplements offset paraquat-induced behavioral phenotype and brain oxidative pathways in mice. Cent Nerv Syst Agents Med Chem 2019;19(1):57-66. https://doi.org/10.2174/1871524919666190115125900
  23. Hosamani R, Muralidhara. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 2009;30(6):977-85. https://doi.org/10.1016/j.neuro.2009.08.012
  24. Hosamani R, Krishna G, Muralidhara. Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain. Nutr Neurosci 2016;19(10):434-46. https://doi.org/10.1179/1476830514y.0000000149
  25. Perez-Bar on G, Avila-Acevedo JG, Garcia-Bores AM, Montes S, Garcia-Jimenez S, Leon-Rivera I, et al. Neuroprotective effect of Buddleja cordata methanolic extract in the 1-methyl-4-phenylpyridinium Parkinson's disease rat model. J Nat Med 2015; 69(1):86-93. https://doi.org/10.1007/s11418-014-0866-4
  26. Chaturvedi RK, Shukla S, Seth K, Chauhan S, Sinha C, Shukla Y, et al. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Neurobiol Dis 2006;22(2):421-34. https://doi.org/10.1016/j.nbd.2005.12.008
  27. Siddique YH, Jyoti S, Naz F. Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson's disease. J Diet Suppl 2014;11(2):121-30. https://doi.org/10.3109/19390211.2013.859207
  28. Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J Nutr 2017;147(10):1926-31. https://doi.org/10.3945/jn.117.255034
  29. Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol(-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridineinduced dopaminergic neurodegeneration. J Neurochem 2001;78(5):1073-82. https://doi.org/10.1046/j.1471-4159.2001.00490.x
  30. Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol Psychiatry 2007;62(12):1353-62. https://doi.org/10.1016/j.biopsych.2007.04.020
  31. Haleagrahara N, Ponnusamy K. Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced parkinsonism in aged Sprague-Dawley rats. J Toxicol Sci 2010;35(1):41-7. https://doi.org/10.2131/jts.35.41
  32. Xu CL, Wang QZ, Sun LM, Li XM, Deng JM, Li LF, et al. Asiaticoside: Attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacol Biochem Behav 2012;100(3):413-8. https://doi.org/10.1016/j.pbb.2011.09.014
  33. Gopi M, Janardhanam VA. Asiaticoside: Attenuation of rotenone induced oxidative burden in a rat model of hemiparkinsonism by maintaining the phosphoinositide-mediated synaptic integrity. Pharmacol Biochem Behav 2017;155:1-15. https://doi.org/10.1016/j.pbb.2017.02.005
  34. Bhatnagar M, Goel I, Roy T, Shukla SD, Khurana S. Complete Comparison Display (CCD) evaluation of ethanol extracts of Centella asiatica and Withania somnifera shows that they can non-synergistically ameliorate biochemical and behavioural damages in MPTP induced Parkinson's model of mice. PLoS One 2017 16;12(5):e0177254. https://doi.org/10.1371/journal.pone.0177254
  35. Xu CL, Qu R, Zhang J, Li LF, Ma SP. Neuroprotective effects of madecassoside in early stage of Parkinson's disease induced by MPTP in rats. Fitoterapia 2013;90:112-8. https://doi.org/10.1016/j.fitote.2013.07.009
  36. Liu J, Banskota AH, Critchley AT, Hafting J, Prithiviraj B. Neuroprotective effects of the cultivated Chondrus crispus in a C. elegans model of Parkinson's disease. Mar Drugs 2015;13(4):2250-66. https://doi.org/10.3390/md13042250
  37. Kim SH, Choi JW. Antioxidant activity of water extract of Chrysanthemum boreale against MPTP-induced mice models. Korean J Oriental Physiology & Pathology 2013;27(1):49-56.
  38. Lee KW, Im JY, Woo JM, Grosso H, Kim YS, Cristovao AC, et al. Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson's disease. Neurotherapeutics 2013;10(1):143-53. https://doi.org/10.1007/s13311-012-0165-2
  39. Rao SV, Muralidhara, Yenisetti SC, Rajini PS. Evidence of neuroprotective effects of saffron and crocin in a Drosophila model of parkinsonism. Neurotoxicology 2016;52:230-42. https://doi.org/10.1016/j.neuro.2015.12.010
  40. Ojha RP, Rastogi M, Devi BP, Agrawal A, Dubey GP. Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. J Neuroimmune Pharmacol 2012;7(3):609-18. https://doi.org/10.1007/s11481-012-9363-2
  41. Mythri RB, Veena J, Harish G, Rao BSS, Bharath MMS. Chronic dietary supplementation with turmeric protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- mediated neurotoxicity in vivo : implications for Parkinson's disease. British J Nutr 2011;106(1):63-72. https://doi.org/10.1017/S0007114510005817
  42. He YY. Micro PET/CT receptor imaging in experimental research of Chinese herbal medicine in the treatment of curcumin model rat with Parkinson disease. Hubei medical university 2012.
  43. Jin Z, Wang YL, Jiang SS, Hou FX, Wang CY, Chen J, et al. Experimental study on the effects of Yangjinhua on striatum tissue SOD, GSH - Px of model rats with Parkinson's Disease. Information on Traditional Chineses Medicine 2013;30(2):87-90.
  44. Ahmad M, Yousuf S, Khan MB, Ahmad AS, Saleem S, Hoda MN, et al. Protective effects of ethanolic extract of Delphinium denudatum in a rat model of Parkinson's disease. Hum Exp Toxicol 2006;25(7):361-8. https://doi.org/10.1191/0960327106ht635oa
  45. Lin AM, Wu LY, Hung KC, Huang HJ, Lei YP, Lu WC, et al. Neuroprotective effects of longan (Dimocarpus longan Lour.) flower water extract on MPP+-induced neurotoxicity in rat brain. J Agric Food Chem 2012;60(36):9188-94. https://doi.org/10.1021/jf302792t
  46. Beserra-Filho JIA, de Macêdo AM, Leao AHFF, Bispo JMM, Santos JR, de Oliveira-Melo AJ, et al. Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson's disease. Food Chem Toxicol 2019;124:17-29. https://doi.org/10.1016/j.fct.2018.11.056
  47. Siddique YH, Mujtaba SF, Jyoti S, Naz F. GC-MS analysis of Eucalyptus citriodora leaf extract and its role on the dietary supplementation in transgenic Drosophila model of Parkinson's disease. Food Chem Toxicol 2013;55:29-35. https://doi.org/10.1016/j.fct.2012.12.028
  48. Ahmad M, Saleem S, Ahmad AS, Yousuf S, Ansari MA, Khan MB, et al. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005;93(1):94-104. https://doi.org/10.1111/j.1471-4159.2005.03000.x
  49. El-Ghazaly MA, Sadik NA, Rashed ER, Abd-El-Fattah AA. Neuroprotective effect of EGb761®and low-dose whole-body γ-irradiation in a rat model of Parkinson's disease. Toxicol Ind Health 2015;31(12):1128-43. https://doi.org/10.1177/0748233713487251
  50. Kuang S, Yang L, Rao Z, Zhong Z, Li J Zhong H, et al. Effects of Ginkgo Biloba extract on A53T α-synuclein transgenic mouse models of Parkinson's disease. Can J Neurol Sci 2018;45(2):182-7. https://doi.org/10.1017/cjn.2017.268
  51. Ba XH, Liu Y. Effects of ginkgo biloba extract and bilobalide on neuronal injury of substantia nigra of rats with Parkinson disease. Chinese Journal of Clinical Rehabilitation 2006;10(11):39-41. https://doi.org/10.3321/j.issn:1673-8225.2006.11.016
  52. Sengupta T, Vinayagam J, Nagashayana N, Gowda B, Jaisankar P, Mohanakumar KP. Antiparkinsonian effects of aqueous methanolic extract of Hyoscyamus niger seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency. Neurochem Res 2011;36(1):177-86. https://doi.org/10.1007/s11064-010-0289-x
  53. Mohanasundari M, Srinivasan MS, Sethupathy S, Sabesan M. Enhanced neuroprotective effect by combination of bromocriptine and Hypericum perforatum extract against MPTP-induced neurotoxicity in mice. J Neurol Sci 2006;249(2):140-4. https://doi.org/10.1016/j.jns.2006.06.018
  54. Mohanasundari M, Sabesan M. Modulating effect of Hypericum perforatum extract on astrocytes in MPTP induced Parkinson's disease in mice. Eur Rev Med Pharmacol Sci 2007;11(1):17-20.
  55. Kiasalari Z, Baluchnejadmojarad T, Roghani M. Hypericum Perforatum hydroalcoholic extract mitigates motor dysfunction and is neuroprotective in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease. Cell Mol Neurobiol 2016;36(4):521-30. https://doi.org/10.1007/s10571-015-0230-6
  56. Essa MM, Subash S, Dhanalakshmi C, Manivasagam T, Al-Adawi S, Guillemin GJ, et al. Dietary supplementation of Walnut partially reverses 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced neurodegeneration in a mouse model of Parkinson's disease. Neurochem Res 2015;40(6):1283-93. https://doi.org/10.1007/s11064-015-1593-2
  57. Guo B, Xu D, Duan H, Du J, Zhang Z, Lee SM, et al. Therapeutic effects of multifunctional tetramethylpyrazine nitrone on models of Parkinson's disease in vitro and in vivo. Biol Pharm Bull 2014;37(2):274-85. https://doi.org/10.1248/bpb.b13-00743
  58. Tseng WT, Hsub YW, Pan TM. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson's disease. Food Funct 2016; 7(2):752-62. https://doi.org/10.1039/c5fo00976f
  59. Narasimhan KK, Paul L, Sathyamoorthy YK, Srinivasan A, Chakrapani LN, Singh A, et al. Amelioration of apoptotic events in the skeletal muscle of intra-nigrally rotenone-infused Parkinsonian rats by Morinda citrifolia-up-regulation of Bcl-2 and blockage of cytochrome c release. Food Funct 2016;7(2):922-37. https://doi.org/10.1039/c5fo00505a
  60. Manyam BV, Dhanasekaran M, Hare TA. Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother Res 2004;18(9):706-12. https://doi.org/10.1002/ptr.1514
  61. Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Singh TD, et al. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice model. Neurochem Int 2014;65:1-13. https://doi.org/10.1016/j.neuint.2013.12.001
  62. Yadav SK, Rai SN, Singh SP. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model. J Chem Neuroanat 2017;80:1-10. https://doi.org/10.1016/j.jchemneu.2016.11.009
  63. Siddique YH, Faisal M, Naz F, Jyoti S, Rahul. Role of Ocimum sanctum leaf extract on dietary supplementation in the transgenic Drosophila model of Parkinson's disease. Chin J Nat Med 2014;12(10):777-81. https://doi.org/10.1016/S1875-5364(14)60118-7
  64. Sarbishegi M, Charkhat Gorgich EA, Khajavi O, Komeili G, Salimi S. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson's disease in rat. Metab Brain Dis 2018;33(1):79-88. https://doi.org/10.1007/s11011-017-0131-0
  65. Shi X, Chen YH, Liu H, Qu HD. Therapeutic effects of paeonol on methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson's disease in mice. Mol Med Rep 2016;14(3):2397-404. https://doi.org/10.3892/mmr.2016.5573
  66. Choi JH, Jang M, Nah SY, Oh S, Cho IH. Multitarget effects of Korean Red Ginseng in animal model of Parkinson's disease: antiapoptosis, antioxidant, antiinflammation, and maintenance of blood-brain barrier integrity. Journal of Ginseng Research 2018;42(3):379-88. https://doi.org/10.1016/j.jgr.2018.01.002
  67. Duan K. Protective effect of total alkaloids from Pinellia Ternate against Parkinson's disease and explore its mechanism. Hubei University of Chinese medicine 2012.
  68. Khan MM, Kempuraj D, Thangavel R, Zaheer A. Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochem Int 2013;62(4):379-88. https://doi.org/10.1016/j.neuint.2013.01.029
  69. Bi Y, Qu PC, Wang QS, Zheng L, Liu HL, Luo R, et al. Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson's disease. Pharm Biol 2015;53(10):1516-24. https://doi.org/10.3109/13880209.2014.991835
  70. Wang Y, Xu H, Fu Q, Ma R, Xiang J. Resveratrol derived from rhizoma et radix Polygoni cuspidati and its liposomal form protect nigral cells of Parkinsonian rats. Zhongguo Zhong yao za zhi 2011;36(8):1060-6.
  71. Kim TE, Yoon YM, Park YI, Kim YS, Jeon BH, Kim MD. Screening of the biological activity from water extracts of the medicinal plants and the protective effect of R.palmatum on MPTP-induced neurotoxicity. Journal of Physiology & Pathology in Korean Medicine 2004;18(6):1666-85.
  72. Wu CR, Tsai CW, Chang SW, Lin CY, Huang LC, Tsai CW. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in vivo and in vitro model of Parkinson's disease: involvement of antioxidative enzymes induction. Chem Biol Interact 2015;225:40-6. https://doi.org/10.1016/j.cbi.2014.11.011
  73. Lin CY, Chen JH, Fu RH, Tsai CW. Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity. Chem Res Toxicol 2014;27(11):1958-66. https://doi.org/10.1021/tx5003063
  74. Chen X, Zhang N, Zhao H, Zou HY, Mu Y, Xue B, et al. The protect effect of Baicalin on the substantial nigra dopaminergic neuron in Parkinson's rats induced by rotenone. Journal of Apoplexy and Nervous Diseases 2008;25(2):174-7.
  75. Chen X, Zhang N, Zou HY, Zhao H, Mu Y. Protective effect of baicalin on mouse with Parkinson's disease induced by MPTP. Zhongguo Zhong Xi Yi Jie He Za Zhi 2007;27(11):1010-2.
  76. Girish C, Muralidhara. Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson's disease. Neurotoxicology 2012;33(3):444-56. https://doi.org/10.1016/j.neuro.2012.04.002
  77. Girish C, Muralidhara. Neuroprotective effect of aqueous extract of Selaginella delicatula as evidenced by abrogation of rotenone-induced motor deficits, oxidative dysfunctions, and neurotoxicity in mice. Cell Mol Neurobiol 2013;33(7):929-42. https://doi.org/10.1007/s10571-013-9959-y
  78. Ahmad S, Khan MB, Hoda MN, Bhatia K, Haque R, Fazili IS, et al. Neuroprotective effect of sesame seed oil in 6-hydroxydopamine induced neurotoxicity in mice model: cellular, biochemical and neurochemical evidence. Neurochem Res 2012;37(3):516-26. https://doi.org/10.1007/s11064-011-0638-4
  79. Khurana N, Gajbhiye A. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson's disease. Neurotoxicology 2013;39:57-64. https://doi.org/10.1016/j.neuro.2013.08.005
  80. Chang HC, Liu KF, Teng CJ, Lai SC, Yang SE, Ching H, et al. Sophora tomentosa extract prevents MPTP-induced Parkinsonism in C57BL/6 mice via the inhibition GSK-3β phosphorylation and oxidative stress. Nutrients 2019;11(2):252. https://doi.org/10.3390/nu11020252
  81. Shalavadi MH, Chandrashekhar VM, Avinash SP, Sowmya C, Ramkishan A. Neuroprotective activity of Stereospermum suaveolens DC against 6-OHDA induced Parkinson's disease model. Indian J Pharmacol 2012;44(6):737-43. https://doi.org/10.4103/0253-7613.103275
  82. Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MN. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J Pharmacol 2014;46(2):176-80. https://doi.org/10.4103/0253-7613.129312
  83. Alzahrani S, Ezzat W, Elshaer RE, Abd El-Lateef AS, Mohammad HMF, Elkazaz AY, et al. Standarized Tribulus terrestris extract protects against rotenone-induced oxidative damage and nigral dopamine neuronal loss in mice. J Physiol Pharmacol 2018;69(6):979-94.
  84. Wang XM, Lu XH. The regulation of Rhynchophylline on the expression levels of dopamine, superoxide dismutase and malondialdehyde in rats with Parkinson disease. Chinese journal of intergrative medicine on cardio/cerebrovascular disease 2014;12(6):730-1.
  85. Sudati JH, Vieira FA, Pavin SS, Dias GR, Seeger RL, Golombieski R, et al. Valeriana officinalis attenuates the rotenone-induced toxicity in Drosophila melanogaster. Neurotoxicology 2013;37:118-26. https://doi.org/10.1016/j.neuro.2013.04.006
  86. Sridharan S, Mohankumar K, Jeepipalli SP, Sankaramourthy D, Ronsard L, Subramanian K, et al. Neuroprotective effect of Valeriana wallichii rhizome extract against the neurotoxin MPTP in C57BL/6 mice. Neurotoxicology 2015;51:172-83. https://doi.org/10.1016/j.neuro.2015.10.012
  87. Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 2007;12(4):473-81.
  88. Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, et al. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 2005;24(3):137-47. https://doi.org/10.1191/0960327105ht509oa
  89. RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, et al. Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson's disease model mouse. J Ethnopharmacol 2009;125(3):369-73. https://doi.org/10.1016/j.jep.2009.08.003
  90. Manjunath MJ, Muralidhara. Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Cent Nerv Syst Agents Med Chem 2013;13(1):43-56. https://doi.org/10.2174/1871524911313010007
  91. Krishna G, Muralidhara. Aqueous extract of tomato seeds attenuates rotenone-induced oxidative stress and neurotoxicity in Drosophila melanogaster. J Sci Food Agric 2016;96(5):1745-55. https://doi.org/10.1002/jsfa.7281
  92. Gokul K, Muralidhara. Oral supplements of aqueous extract of tomato seeds alleviate motor abnormality, oxidative impairments and neurotoxicity induced by rotenone in mice: relevance to Parkinson's disease. Neurochem Res 2014;39(7):1382-94. https://doi.org/10.1007/s11064-014-1323-1
  93. The Korean pharmacopoeia eleventh edition (Ministry of food and drug safety, 2020)
  94. National Standard of Traditional Medicinal (Herbal and Botanical) Materials (Ministry of food and drug safety, 2020)
  95. Korean Food Standards Codex. Ministry of food and drug safety. last modified Dec 1, 2020, https://www.foodsafetykorea.go.kr/foodcode/01_02.jsp?idx=812
  96. Rock RB, Peterson PK. Microglia as a pharmacological target in infectious and inflammatory diseases of the brain. J Neuroimmune Pharmacol 2006;1(2):117-26. https://doi.org/10.1007/s11481-006-9012-8
  97. Schober A. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res 2004;318(1):215-24. https://doi.org/10.1007/s00441-004-0938-y
  98. Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenylpyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 1985;36(26):2503-8. https://doi.org/10.1016/0024-3205(85)90146-8
  99. Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ. Paeoniflorin attenuates neuro-inflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br J Pharmacol 2006;148(3):314-25. https://doi.org/10.1038/sj.bjp.0706732
  100. Ahn EY, Chung HA. A Review on Pathophysiology of Parkinson's Disease. J Occupational Therapy for the Aged and Dementia 2009;3(1):1-9.
  101. Pahwa R, Factor SA, Lyons KE, Ondo WG, Gronseth G, Bronte-Stewart H et al. Practice Parameter: treatment of Parkinson disease with motor fluctuatuins and dyskinesia (an evidence-based review) : report of the quality standards subcommittee of the American academy of neurology. Neurology 2006;66(7):983-95. https://doi.org/10.1212/01.wnl.0000215250.82576.87
  102. Oh MK, Kim TY, Kim DJ, Shin HS. A case report of dyskinesia in lower limbs caused by Parkinson's disease diagnosed as Shinjeonghyuson. Korean J Orient Int Med 2007;28(4):919-28.
  103. Lee MS, Park YG, Bae NY. A case study of a Taeeumin patient with advanced Parkinson's disease diagnosed as Dry-heat symptomatic pattern. J Sasang Constitut Med 2013;25(4):442-53. https://doi.org/10.7730/JSCM.2013.25.4.442
  104. Koh DK, Yun JM, Lee TH. Effects of Aconiti Tuber on the change of interleukin-6 and TNF-α level induced by LPS I.C.V. injection in mice. The Korean Journal of Oriental Medical Prescription 2004;12(1):195-208.
  105. Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 2000 May;14(3):174-9. https://doi.org/10.1002/(SICI)1099-1573(200005)14:3<174::AID-PTR624>3.0.CO;2-O
  106. Sairam K, Dorababu M, Goel RK, Bhattacharya SK. Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine 2002;9(3):207-11. https://doi.org/10.1078/0944-7113-00116
  107. Channa S, Dar A, Anjum S, Yaqoob M, Atta Ur R. Anti-inflammatory activity of Bacopa monniera in rodents. J Ethnopharmacol 2006;104(1-2):286-9. https://doi.org/10.1016/j.jep.2005.10.009
  108. Chaudhuri PK, Srivastava R, Kumar S, Kumar S. Phytotoxic and antimicrobial constituents of Bacopa monnieri and Holmskioldia sanguinea. Phytother Res 2004;18(2):114-7. https://doi.org/10.1002/ptr.1278
  109. Hirsch EC, Hunot S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol 2009;8(4):382-97. https://doi.org/10.1016/S1474-4422(09)70062-6
  110. Dufresne CJ, Farnworth ER. A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 2001;12(7):404-21. https://doi.org/10.1016/S0955-2863(01)00155-3
  111. Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr 2001;131(9):2248-51. https://doi.org/10.1093/jn/131.9.2248
  112. Xu CL, Wang QZ, Sun LM, Li XM, Deng JM, Li LF, et al. Asiaticoside: Attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacol Biochem Behav 2012;100(3):413-8. https://doi.org/10.1016/j.pbb.2011.09.014
  113. Manjunath MJ, Muralidhara. Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Cent Nerv Syst Agents Med Chem 2013;13(1):43-56. https://doi.org/10.2174/1871524911313010007
  114. RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, et al. Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson's disease model mouse. J Ethnopharmacol 2009;125(3):369-73. https://doi.org/10.1016/j.jep.2009.08.003
  115. Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M. The neuroprotective effect of Withania somnifera root extract in MPTPintoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 2007;12(4):473-81.
  116. Grunblat E, Mandel S, Maor G, Youdim MB. Gene expression analysis in N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mice model of Parkinson disease using cDNA microarray. J Neurochem 2001;78(1):1-12. https://doi.org/10.1046/j.1471-4159.2001.00397.x
  117. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA. The origins of oxidant stress in Parkinson's disease and therapeutic strategies. Antioxid Redox Signal 2011;14(7):1289-301. https://doi.org/10.1089/ars.2010.3521
  118. Pogarell O, Gasser T, van Hilten JJ, Spieker S, Pollentier S, Meier D, et al. Pramipexole in patients with Parkinson's disease and marked drug resistant tremor: a randomised, double blind, placebo controlled multicentre study. J Neurol Neurosurg Psychiatry 2002;72(6):713-20. https://doi.org/10.1136/jnnp.72.6.713
  119. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human disease. Clin Biochem 1999;32(8):595-603. https://doi.org/10.1016/S0009-9120(99)00075-2
  120. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 1991;91(3C):14S-22S. https://doi.org/10.1016/0002-9343(91)90279-7
  121. Ebadi M, Srinivasan SK, Baxi MD. Oxidative stress and antioxidant therapy in Parkinson's disease. Prog Neurobiol 1996;48(1):1-19. https://doi.org/10.1016/0301-0082(95)00029-1
  122. Vozenin-Brotons MC, Sivan V, Gault N, Renard C, Geffrotin C, Delanian S, et al. Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Free Radic Biol Med 2001;30(1):30-42. https://doi.org/10.1016/S0891-5849(00)00431-7
  123. Campana F, Zervoudis S, Perdereau B, Gez E, Fourquet A, Badiu C, et al. Topical superoxide dismutase reduces post-irradiation breast cancer fibrosis. J Cell Mol Med 2004;8(1):109-16. https://doi.org/10.1111/j.1582-4934.2004.tb00265.x
  124. Westm BD, Sheghrue PJ, Vanko AEH, Ransorn RW, Kinney GG. Amphetamine-induced locomotor activity is reduced in mice following MPTP treatment but not following selegiline/MPTP treatment. Pharmacol Biochm Behav 2006;84(1):158-61. https://doi.org/10.1016/j.pbb.2006.04.022
  125. Sun L, Xu S, Zhou M, Wang C, Wu Y, Chan P. Effects of cysteamine on MPTP-induced dopaminergic neurodegeneration in mice. Brain Res 2010;1335:74-82. https://doi.org/10.1016/j.brainres.2010.03.079
  126. Khasnavis S, Pahan K. Cinnamon treatment upregulates neuroprotective proteins Parkin and DJ-1 and protects dopaminergic neurons in a mouse model of Parkinson's disease. J Neuroimmune Pharmacol 2014;9(4):569-81. https://doi.org/10.1007/s11481-014-9552-2
  127. Park GH, Kim HG, Ju MS, Kim AJ, Oh MS. Thuja orientalis leaves extract protects dopaminergic neurons against MPTP-induced neurotoxicity via inhibiting inflammatory action. Kor J Herbology 2014;29(3):27-33. https://doi.org/10.6116/kjh.2014.29.3.27