Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.8.119

Poly (ADP-ribose) in the pathogenesis of Parkinson's disease  

Lee, Yunjong (Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, the Johns Hopkins University School of Medicine)
Kang, Ho Chul (Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, the Johns Hopkins University School of Medicine)
Lee, Byoung Dae (Neurodegeneration Control Research Center, Department of Neuroscience, Kyung Hee University)
Lee, Yun-Il (Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT))
Kim, Young Pil (Department of Bio-Engineering, Life Science RD Center, Sinil Pharmaceutical Co.)
Shin, Joo-Ho (Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, the Johns Hopkins University School of Medicine)
Publication Information
BMB Reports / v.47, no.8, 2014 , pp. 424-432 More about this Journal
Abstract
The defining feature of Parkinson's disease is a progressive and selective demise of dopaminergic neurons. A recent report on Parkinson's disease animal model demonstrates that poly (ADP-ribose) (PAR) dependent cell death, also named parthanatos, is accountable for selective dopaminergic neuronal loss. Parthanatos is a programmed necrotic cell death, characterized by PARP1 activation, apoptosis inducing factor (AIF) nuclear translocation, and large scale DNA fragmentation. Besides cell death regulation via interaction with AIF, PAR molecule mediates diverse cellular processes including genomic stability, cell division, transcription, epigenetic regulation, and stress granule formation. In this review, we will discuss the roles of PARP1 activation and PAR molecules in the pathological processes of Parkinson's disease. Potential interaction between PAR molecule and Parkinson's disease protein interactome are briefly introduced. Finally, we suggest promising points of therapeutic intervention in the pathological PAR signaling cascade to halt progression in Parkinson's disease.
Keywords
Dopaminergic neurons; Neurodegeneration; Parkinson's disease; Parthanatos; Poly (ADP-ribose);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mashimo, M., Kato, J. and Moss, J. (2013) ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 110, 18964-18969.   DOI   ScienceOn
2 Yu, S. W., Wang, H., Dawson, T. M. and Dawson, V. L. (2003) Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol. Dis. 14, 303-317.   DOI   ScienceOn
3 Strosznajder, J. B., Czapski, G. A., Adamczyk, A. and Strosznajder, R. P. (2012) Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer's disease. Mol. Neurobiol. 46, 78-84.   DOI   ScienceOn
4 Martire, S., Fuso, A., Rotili, D., Tempera, I., Giordano, C., De Zottis, I., Muzi, A., Vernole, P., Graziani, G., Lococo, E., Faraldi, M., Maras, B., Scarpa, S., Mosca, L. and d'Erme, M. (2013) PARP-1 modulates amyloid beta peptide- induced neuronal damage. PLoS One. 8, e72169.   DOI   ScienceOn
5 Fatokun, A. A., Dawson, V. L. and Dawson, T. M. (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br. J. Pharmacol. 171, 2000-2016.   DOI   ScienceOn
6 Gagne, J. P., Rouleau, M. and Poirier, G. G. (2012) Structural biology. PARP-1 activation--bringing the pieces together. Science 336, 678-679.   DOI   ScienceOn
7 Luo, X. and Kraus, W. L. (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26, 417-432.   DOI   ScienceOn
8 Vyas, S., Chesarone-Cataldo, M., Todorova, T., Huang, Y. H. and Chang, P. (2013) A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat. Commun. 4, 2240.
9 Szabo, C. and Dawson, V. L. (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends. Pharmacol. Sci. 19, 287-298.   DOI   ScienceOn
10 Lang, A. E. and Lozano, A. M. (1998) Parkinson's disease. First of two parts. N. Engl. J. Med. 339, 1044-1053.   DOI   ScienceOn
11 Schreiber, V., Dantzer, F., Ame, J. C. and de Murcia, G. (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517-528.   DOI   ScienceOn
12 Wang, H., Shimoji, M., Yu, S. W., Dawson, T. M. and Dawson, V. L. (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. Ann. N. Y. Acad. Sci. 991, 132-139.
13 Lang, A. E. and Lozano, A. M. (1998) Parkinson's disease. Second of two parts. N. Engl. J. Med. 339, 1130-1143.   DOI   ScienceOn
14 Stark, C., Breitkreutz, B. J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535-539.   DOI   ScienceOn
15 Gehrke, S., Imai, Y., Sokol, N. and Lu, B. (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637-641.   DOI   ScienceOn
16 Okamura, H., Yoshida, K., Amorim, B. R. and Haneji, T. (2008) Histone H1.2 is translocated to mitochondria and associates with Bak in bleomycin-induced apoptotic cells. J. Cell Biochem. 103, 1488-1496.   DOI   ScienceOn
17 Imam, S. Z., Zhou, Q., Yamamoto, A., Valente, A. J., Ali, S. F., Bains, M., Roberts, J. L., Kahle, P. J., Clark, R. A. and Li, S. (2011) Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. J. Neurosci. 31, 157-163.   DOI   ScienceOn
18 Leung, A. K., Calabrese, J. M. and Sharp, P. A. (2006) Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. U. S. A. 103, 18125-18130.   DOI   ScienceOn
19 Martin, I., Dawson, V. L. and Dawson, T. M. (2011) Recent advances in the genetics of Parkinson's disease. Annu. Rev. Genomics. Hum. Genet. 12, 301-325.   DOI   ScienceOn
20 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.   DOI   ScienceOn
21 Anderson, P. and Kedersha, N. (2008) Stress granules: the Tao of RNA triage. Trends. Biochem. Sci. 33, 141-150.   DOI   ScienceOn
22 Leung, A. K., Vyas, S., Rood, J. E., Bhutkar, A., Sharp, P. A. and Chang, P. (2011) Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42, 489-499.   DOI   ScienceOn
23 Collier, T. J., Kanaan, N. M. and Kordower, J. H. (2011) Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nat. Rev. Neurosci. 12, 359-366.   DOI   ScienceOn
24 Clark, I. E., Dodson, M. W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., Yoo, S. J., Hay, B. A. and Guo, M. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166.   DOI   ScienceOn
25 Park, J., Lee, S. B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J. M. and Chung, J. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161.   DOI   ScienceOn
26 Ko, H. S., Lee, Y., Shin, J. H., Karuppagounder, S. S., Gadad, B. S., Koleske, A. J., Pletnikova, O., Troncoso, J. C., Dawson, V. L. and Dawson, T. M. (2010) Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc. Natl. Acad. Sci. U.S.A. 107, 16691-16696.   DOI   ScienceOn
27 Ziviani, E., Tao, R. N. and Whitworth, A. J. (2010) Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U. S. A. 107, 5018-5023.   DOI   ScienceOn
28 Corti, O., Hampe, C., Koutnikova, H., Darios, F., Jacquier, S., Prigent, A., Robinson, J. C., Pradier, L., Ruberg, M., Mirande, M., Hirsch, E., Rooney, T., Fournier, A. and Brice, A. (2003) The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum. Mol. Genet. 12, 1427-1437.   DOI   ScienceOn
29 Ko, H. S., von Coelln, R., Sriram, S. R., Kim, S. W., Chung, K. K., Pletnikova, O., Troncoso, J., Johnson, B., Saffary, R., Goh, E. L., Song, H., Park, B. J., Kim, M. J., Kim, S., Dawson, V. L. and Dawson, T. M. (2005) Accumulation of the authentic parkin substrate aminoacyl- tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. 25, 7968-7978.   DOI   ScienceOn
30 Guastafierro, T., Cecchinelli, B., Zampieri, M., Reale, A., Riggio, G., Sthandier, O., Zupi, G., Calabrese, L. and Caiafa, P. (2008) CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery. J. Biol. Chem. 283, 21873-21880.   DOI   ScienceOn
31 Cohen-Armon, M., Visochek, L., Rozensal, D., Kalal, A., Geistrikh, I., Klein, R., Bendetz-Nezer, S., Yao, Z. and Seger, R. (2007) DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol. Cell 25, 297-308.   DOI   ScienceOn
32 Guzman, J. N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Schumacker, P. T. and Surmeier, D. J. (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696-700.   DOI   ScienceOn
33 Severin, J., Lizio, M., Harshbarger, J., Kawaji, H., Daub, C. O., Hayashizaki, Y., Consortium, F., Bertin, N. and Forrest, A. R. (2014) Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat. Biotechnol. 32, 217-219.   DOI   ScienceOn
34 Ohmiya, H., Vitezic, M., Frith, M. C., Itoh, M., Carninci, P., Forrest, A. R., Hayashizaki, Y., Lassmann, T. and Consortium, F. (2014) RECLU: a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE). BMC Genomics. 15, 269.   DOI   ScienceOn
35 Guzman, J. N., Sanchez-Padilla, J., Chan, C. S. and Surmeier, D. J. (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29, 11011-11019.   DOI   ScienceOn
36 Lee, Y., Karuppagounder, S. S., Shin, J. H., Lee, Y. I., Ko, H. S., Swing, D., Jiang, H., Kang, S. U., Lee, B. D., Kang, H. C., Kim, D., Tessarollo, L., Dawson, V. L. and Dawson, T. M. (2013) Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16, 1392-1400.   DOI   ScienceOn
37 Herceg, Z. and Wang, Z. Q. (2001) Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477, 97-110.   DOI   ScienceOn
38 Virag, L. and Szabo, C. (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375-429.   DOI   ScienceOn
39 Mandir, A. S., Przedborski, S., Jackson-Lewis, V., Wang, Z. Q., Simbulan-Rosenthal, C. M., Smulson, M. E., Hoffman, B. E., Guastella, D. B., Dawson, V. L. and Dawson, T. M. (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc. Natl. Acad. Sci. U. S. A. 96, 5774-5779.   DOI   ScienceOn
40 Andrabi, S. A., Dawson, T. M. and Dawson, V. L. (2008) Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. N. Y. Acad. Sci. 1147, 233-241.   DOI   ScienceOn
41 Bai, P. and Canto, C. (2012) The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16, 290-295.   DOI   ScienceOn
42 Andrabi, S. A., Kim, N. S., Yu, S. W., Wang, H., Koh, D. W., Sasaki, M., Klaus, J. A., Otsuka, T., Zhang, Z., Koehler, R. C., Hurn, P. D., Poirier, G. G., Dawson, V. L. and Dawson, T. M. (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl. Acad. Sci. U. S. A. 103, 18308-18313.   DOI   ScienceOn
43 Wang, Z., Michaud, G. A., Cheng, Z., Zhang, Y., Hinds, T. R., Fan, E., Cong, F. and Xu, W. (2012) Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl) ation-dependent ubiquitination. Genes. Dev. 26, 235-240.   DOI   ScienceOn
44 Slade, D., Dunstan, M. S., Barkauskaite, E., Weston, R., Lafite, P., Dixon, N., Ahel, M., Leys, D. and Ahel, I. (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477, 616-620.   DOI   ScienceOn
45 Gagne, J. P., Isabelle, M., Lo, K. S., Bourassa, S., Hendzel, M. J., Dawson, V. L., Dawson, T. M. and Poirier, G. G. (2008) Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36, 6959-6976.   DOI   ScienceOn
46 Gagne, J. P., Pic, E., Isabelle, M., Krietsch, J., Ethier, C., Paquet, E., Kelly, I., Boutin, M., Moon, K. M., Foster, L. J. and Poirier, G. G. (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Res. 40, 7788-7805.   DOI
47 Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pages, F., Trajanoski, Z. and Galon, J. (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093.   DOI   ScienceOn
48 Kim, M. Y., Zhang, T. and Kraus, W. L. (2005) Poly(ADPribosyl) ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes. Dev. 19, 1951-1967.   DOI   ScienceOn
49 Menissier de Murcia, J., Ricoul, M., Tartier, L., Niedergang, C., Huber, A., Dantzer, F., Schreiber, V., Ame, J. C., Dierich, A., LeMeur, M., Sabatier, L., Chambon, P. and de Murcia, G. (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255-2263.   DOI   ScienceOn
50 Burkle, A. (2005) Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. 272, 4576-4589.   DOI   ScienceOn
51 Goldberg, S., Visochek, L., Giladi, E., Gozes, I. and Cohen-Armon, M. (2009) PolyADP-ribosylation is required for long-term memory formation in mammals. J. Neurochem. 111, 72-79.   DOI   ScienceOn
52 Hanai, S., Kanai, M., Ohashi, S., Okamoto, K., Yamada, M., Takahashi, H. and Miwa, M. (2004) Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 101, 82-86.   DOI   ScienceOn
53 Galluzzi, L., Aaronson, S. A., Abrams, J., Alnemri, E. S., Andrews, D. W., Baehrecke, E. H., Bazan, N. G., Blagosklonny, M. V., Blomgren, K., Borner, C., Bredesen, D. E., Brenner, C., Castedo, M., Cidlowski, J. A., Ciechanover, A., Cohen, G. M., De Laurenzi, V., De Maria, R., Deshmukh, M., Dynlacht, B. D., El-Deiry, W. S., Flavell, R. A., Fulda, S., Garrido, C., Golstein, P., Gougeon, M. L., Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., Ichijo, H., Jaattela, M., Kepp, O., Kimchi, A., Klionsky, D. J., Knight, R. A., Kornbluth, S., Kumar, S., Levine, B., Lipton, S. A., Lugli, E., Madeo, F., Malomi, W., Marine, J. C., Martin, S. J., Medema, J. P., Mehlen, P., Melino, G., Moll, U. M., Morselli, E., Nagata, S., Nicholson, D. W., Nicotera, P., Nunez, G., Oren, M., Penninger, J., Pervaiz, S., Peter, M. E., Piacentini, M., Prehn, J. H., Puthalakath, H., Rabinovich, G. A., Rizzuto, R., Rodrigues, C. M., Rubinsztein, D. C., Rudel, T., Scorrano, L., Simon, H. U., Steller, H., Tschopp, J., Tsujimoto, Y., Vandenabeele, P., Vitale, I., Vousden, K. H., Youle, R. J., Yuan, J., Zhivotovsky, B. and Kroemer, G. (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death. Differ. 16, 1093-1107.   DOI   ScienceOn
54 Moore, D. J., West, A. B., Dawson, V. L. and Dawson, T. M. (2005) Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28, 57-87.   DOI   ScienceOn
55 Cohen-Armon, M., Visochek, L., Katzoff, A., Levitan, D., Susswein, A. J., Klein, R., Valbrun, M. and Schwartz, J. H. (2004) Long-term memory requires polyADP-ribosylation. Science 304, 1820-1822.   DOI   ScienceOn
56 Cortes, U., Tong, W. M., Coyle, D. L., Meyer-Ficca, M. L., Meyer, R. G., Petrilli, V., Herceg, Z., Jacobson, E. L., Jacobson, M. K. and Wang, Z. Q. (2004) Depletion of the 110-kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol. Cell Biol. 24, 7163-7178.   DOI   ScienceOn