Browse > Article
http://dx.doi.org/10.4062/biomolther.2008.16.4.312

Ever Increasing Number of the Animal Model Systems for Attention Deficit/Hyperactivity Disorder: Attention, Please  

Kim, Hee-Jin (Department of Pharmacy, Sahmyook University)
Park, Seung-Hwa (Department of Pharmacology, School of Medicine and IBST, Konkuk University)
Kim, Kyeong-Man (Department of Pharmacology, College of Pharmacy, Chonnam National University)
Ryu, Jong-Hoon (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University)
Cheong, Jae-Hoon (Department of Pharmacy, Sahmyook University)
Shin, Chan-Young (Department of Pharmacology, School of Medicine and IBST, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.16, no.4, 2008 , pp. 312-319 More about this Journal
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by hyperactivity, inattention, and impulsiveness. Current estimates suggest that 4-12% of school age children are affected by ADHD, which hampers proper social relationship and achievements in school. Even though the exact etiology of the disorder is still in the middle of active investigation, the availability of pharmacological treatments for the disorder suggest that at least the symptoms of ADHD are manageable. To develop drugs with higher efficacy and fewer side effects, it is essential to have appropriate animal models for in vivo drug screening processes. Good animal models can also provide the chances to improve our understanding of the disease processes as well as the underlying etiology of the disorder. In this review, we summarized current animal models used for ADHD research and discussed the point of concerns about using specific animal models.
Keywords
Genetic models; Acquired animal models; Hyperactivity; Inattention; Impusivity;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Cheon, K. A., Ryu, Y. H., Kim, Y. K., Namkoong, K., Kim, C. H. and Lee, J. D. (2003). Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur. J. Nucl. Med. 30, 306-311   DOI   ScienceOn
2 Davids, E., Zhang, K., Kula, N. S., Tarazi, F. I. and Baldessarini, R. J. (2002). Effects of norepinephrine and serotonin transporterer inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J. Pharmacol. Exp. Ther. 301, 1097-1102   DOI   ScienceOn
3 Hirano, M., Rakwal, R., Shibato, J., Sawa, H., Nagashima, K., Ogawa, Y., Yoshida, Y., Iwahashi, H., Niki, E. and Masuo, Y. (2008). Proteomics- and transcriptomics-based screening of differentially expressed proteins and genes in brain of Wig rat: a model for attention deficit hyperactivity disorder (ADHD) research. J. Proteome. Res. 7, 2471-2489   DOI   ScienceOn
4 Bruno, K. J., Freet, C. S., Twining, R. C., Egami, K., Grigson, P. S. and Hess, E. J. (2006). Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol. Dis. 25, 206-216   DOI   ScienceOn
5 Li, W., Cui, Y., Kushner, S. A., Brown, R. A., Jentsch, J. D., Frankland, P. W., Cannon, T. D. and Silva, A. J. (2005). The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr. Biol. 15, 1961-1967   DOI   ScienceOn
6 Molina-Holgado, E., Dewar, K., Descarries, L. and Reader, T. A. (1994). Altered dopamine and serotonin metabolism in the dopamine-denervated and serotonin-hyperinnervated neostriatum of adult rat after neonatal 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 270, 713-721
7 Ferguson, S. A., Paule, M. G. and Holson, R. R. (1996). Functional effects of ethylazoxymethanol-induced cerebellar hypoplasia in rats. Neurotoxicol. Teratol. 18, 529-537   DOI   ScienceOn
8 Kayl, A. E., Moore, B. D. 3rd., Slopis, J. M., Jackson, E. F. and Leeds, N. E. (2000). Quantitative morphology of the corpus callosum in children with neurofibromatosis and attention-deficit hyperactivity disorder. J. Child. Neurol. 15, 90-96   DOI
9 Oorschot, D. E., Voss, L., Covey, M. V., Bilkey, D. K. and Saunders, S. E. (2007). ADHD-like hyperactivity, with no attention deficit, in adult rats after repeated hypoxia during the equivalent of extreme prematurity. J. Neurosci. Methods 166, 315-322   DOI   ScienceOn
10 Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 121, 65-94   DOI   ScienceOn
11 Burd, L., Klug, M. G., Coumbe, M. J. and Kerbeshian, J. (2003). Children and adolescents with attention deficit-hyperactivity disorder. 1. Prevalence and cost of care. J. Child. Neurol. 18, 555-561   DOI
12 Dell'Anna, M. E. (1999). Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav. Brain. Res. 45, 125-134   DOI   ScienceOn
13 Trinh J. V, Nehrenberg D. L, Jacobsen J. P, Caron M. G. and Wetsel W. C. (2003) Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neuroscience 118, 297-310   DOI   ScienceOn
14 Ueno, K., Togashi, H., Matsumoto, M,, Ohashi, S., Saito, H. and Yoshioka, M. (2002). Alpha4beta2 nicotinic acetylcholine receptor activation ameliorates impairment of spontaneous alternation behavior in stroke-prone spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder. J. Pharmacol. Exp. Ther. 302, 95-100   DOI   ScienceOn
15 Casolini, P., Zuena, A. R., Cinque, C., Matteucci, P., Alema, G. S., Adriani, W., Carpinelli, G., Santoro, F., Alleva, E., Bosco, P., Nicoletti, F., Laviola, G. and Catalani, A. (2005). Sub-neurotoxic neonatal anoxia induces subtle behavioural changes and specific abnormalities in brain group-I metabotropic glutamate receptors in rats. J. Neurochem. 95, 137-145   DOI   ScienceOn
16 Chess, A. C., Keene, C. S., Wyzik, E. C. and Bucci, D. J. (2005). Stimulus processing and associative learning in Wistar and WKHA rats. Behav. Neurosci. 119, 772-780   DOI   ScienceOn
17 Dalley, J. W., Theobald, D. E., Pereira, E. A., Li, P. M. and Robbins, T. W. (2002). Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioral performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl). 164, 329-340   DOI
18 Ferguson, S. A. (2001). A review of rodent models of ADHD. In: Solano, M. V., Arnsten, A. F. T. and Castellanos, F. X. (eds) Stimulant Drugs adnd ADHD, Basic and Clinical Neuroscience. University Press, Oxford. pp 209-220
19 Gainetdinov, R. R., Jones, S. R. and Caron, M. G. (1999). Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol. Psychiatr. 46, 303-311   DOI   ScienceOn
20 Glaser, P. E., Surgener, S. P., Grondin, R., Gash, C. R., Palmer, M., Castellanos, F. X. and Gerhardt, G. A. (2006). Cerebellar neurotransmission in attention-deficit/hyperactivity disorder: does dopamine neurotransmission occur in the cerebellar vermis? J. Neurosci. Methods. 151, 62-67   DOI   ScienceOn
21 Highfield, D. A., Hu, D. and Amsel, A. (1998). Alleviation of xirradiation-based deficit in memory-based learning by Damphetamine: Suggestions for attention deficit/ hyperactivity disorder. Proc. Natl. Acad. Sci. USA. 95, 5785-5788   DOI
22 Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Suim M. Q., Liang, M., Tian, L. X., Jiang, T. Z. and Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain. Dev. 29, 83-91   DOI   ScienceOn
23 Sarkissian, C. N., Boulais, D. M., McDonald, J. D. and Scriver, C. R. (2000). A heteroallelic mutant mouse model: a new orthologue for human hyperphenylalaninemia. Mol. Genet. Metabol. 69, 188-194   DOI   ScienceOn
24 Greco, B. and Carli, M. (2006). Reduced attention and increased impulsivity in mice lacking NPY Y2 receptors: relation to anxiolytic-like phenotype. Behav. Brain. Res. 169, 325-334   DOI   ScienceOn
25 Hausknecht, K. A., Acheson, A., Farrar, A. M., Kieres, A. K., Shen, R. Y., Richards, J. B. and Sabol, K. E. (2005). Prenatal alcohol exposure causes attention deficits in male rats. Behav. Neurosci. 119, 302-310   DOI   ScienceOn
26 Hendley, E. D. and Ohlsson, W. G. (1991). Two new inbred rat strains derived from SHR: WKHA, hyperactive, and WKHT, hypertensive rats. Am. J. Physiol. (Heart Circ Physiol). 261, H583-H589   DOI
27 Holson, R. R., Gazzara, R. A., Ferguson, S. A. and Adams, J. (1997). Behavioral effects of low-dose gestational day 11-13 retinoic acid exposure. Neurotoxicol. Teratol. 19, 355-362   DOI   ScienceOn
28 Hunziker, M. H., Saldana, R. L. and Neuringer, A. (1996). Behavioral variability in SHR and WKY rats as a function of rearing environment and reinforcement contingency. J. Exp. Anal. Behav. 65, 129-144   DOI   ScienceOn
29 Kamimura, E., Ueno, Y., Tanaka, S., Sawa, H., Yoshioka, M., Ueno, K. I., Inoue, T., Li, X., Koyama, T., Ishikawa, R. and Nagashima, K. (2001). New rat model for attention deficit hyperactive disorder (ADHD). Comp. Med. 51, 245-251
30 Kohlert, J. G. and Bloch, G. J. (1993). A rat model for attention deficit-hyperactivity disorder. Physiol. Behav. 53, 1215-1218   DOI   ScienceOn
31 Magara, F., Ricceri, L., Wolfer, D. P. and Lipp, H. P. (2000). The acallosal mouse strain I/LnJ: A putative model of ADHD? Neurosci. Biobehav. Rev. 24, 45-50   DOI   ScienceOn
32 Kimura-Kuroda, J., Nagata, I. and Kuroda, Y. (2007). Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells: a possible causal factor for developmental brain disorders? Chemosphere 67, S412-S420   DOI   ScienceOn
33 Kostrzewa, R. M., Brus, R., Kalbfleisch, J. H., Perry, K. W. and Fuller, R. W. (1994). Proposed animal model of attention deficit hyperactivity disorder. Brain Res. Bull. 34, 161-167   DOI   ScienceOn
34 Leo, D., Sorrentino, E., Volpicelli, F., Eyman, M., Greco, D., Viggiano, D., di. P. U. and Perrone-Capano, C. (2003). Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci. Biobehav. Rev. 27, 661-669   DOI   ScienceOn
35 Mandolesi, L., Leggio, M. G., Spirito, F., Federico, F. and Petrosini, L. (2007). Is the cerebellum involved in the visuolocomotor associative learning? Behav. Brain. Res. 184, 47-56   DOI   ScienceOn
36 Mill, J., Curran, S., Kent, L., Gould, A., Huckett, L., Richards, S., Taylor, E. and Asherson, P. (2002). Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am. J. Med. Genet. 114, 269-271   DOI   ScienceOn
37 Mostofsky, S. H., Reiss, A. L., Lockhart, P. and Denckla, M. B. (1998). Evaluation of cerebellar size in attention-deficit hyperactivity disorder. J. Child. Neurol. 13, 434-439   DOI
38 Russell, V. A., Sagvolden, T. and Johansen, E. B. A. (2005). Animal models of attention-deficit hyperactivity disorder. Behav. Brain Funct. 1, 9   DOI
39 Nigg, J. T. (2008). ADHD, lead exposure and prevention: how much lead or how much evidence is needed? Expert. Rev. Neurother. 8, 519-521   DOI   ScienceOn
40 Pattij, T. and Vanderschuren, L. J. (2008). The neuropharmacology of impulsive behaviour. Trends Pharmacol. Sci. 29, 192-199   DOI   ScienceOn
41 Sagvolden, T. (2000). Behavioral validation of the spontane ously hypertensive rat (SHR) as an animal model of attentiondeficit/hyperactivity disorder (AD/HD). Neurosci. Biobehav. Rev. 24, 31-39   DOI   ScienceOn
42 Shaywitz, B. A., Yager, R. D., Klopper, J. H. (1976). Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191, 305-308   DOI
43 Siesser, W. B., Zhao, J., Miller, L. R., Cheng, S. Y. and McDonald, M. P. (2006). Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes. Brain Behav. 5, 282-297   DOI   ScienceOn
44 Taylor, E. (1998). Clinical foundations of hyperactivity research. Behav. Brain Res. 94, 11-24   DOI   ScienceOn
45 Tsai, S. J. (2007). Attention-deficit hyperactivity disorder may be associated with decreased central brain-derived neurotrophic factor activity: clinical and therapeutic implications. Med. Hypotheses 68, 896-899   DOI   ScienceOn
46 Winstanley, C. A., Dalley, J. W., Theobald, D. E. and Robbins, T. W. (2003). Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology (Berl). 170, 320-331   DOI
47 Ujhzy, E., Schmidtov, M., Dubovick, M., Navarova, J., Brucknerov, I. and Mach, M. (2006). Neurobehavioural changes in rats after neonatal anoxia: effect of antioxidant stobadine pretreatment. Neuro. Endocrinol. Lett. 27 Suppl 2, 82-85
48 van den Bergh, F. S., Bloemarts, E., Chan, J. S., Groenink, L., Olivier, B. and Oosting, R. S. (2006). Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol. Biochem. Behav. 83, 380-390   DOI   ScienceOn
49 Viggiano, D., Vallone, D., Welzl, H. and Sadile, A. G. (2002). The Naples High- and Low-Excitability rats: Selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system. Behav. Genet. 32, 315-333   DOI   ScienceOn
50 Watanabe, Y., Fujita, M., Ito, Y., Okada, T., Kusuoka, H. and Nishimura, T. (1997). Brain dopamine transporter in spontaneously hypertensive rats. J. Nucl. Med. 38, 470-474
51 Zhang, K., Davids, E., Tarazi, F. I. and Baldessarini, R. J. (2002). Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology (Berl) 161, 100-106   DOI
52 Adams, W., Kusljic, S. and van den Buuse, M. (2008). Serotonin depletion in the dorsal and ventral hippocampus: Effects on locomotor hyperactivity, prepulse inhibition and learning and memory. Neuropharmacology. doi:10.1016/j.neuropharm. 2008.06.035   DOI   ScienceOn