• Title/Summary/Keyword: Analog-digital converter

Search Result 587, Processing Time 0.027 seconds

Zigbee Transmitter Using a Low-Power High-Gain Up-Conversion Mixer (저 전력 고 이득 주파수 상향변환기를 이용한 Zigbee 송신기 설계)

  • Baik, Seyoung;Seo, Changwon;Jin, Ho Jeong;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.825-833
    • /
    • 2016
  • This paper introduces a direct-conversion CMOS RF transmitter for the IEEE 802.15.4 standard with a low-power high-gain up-conversion mixer designed in $0.18{\mu}m$ process. The designed RF DCT(Direct Conversion Transmitter) is composed of differential DAC(Digital to Analog Converter), passive low-pass filter, quadrature active mixer and drive amplifier. The most important characteristic in designing RF DCT is to satisfy the 2.4 GHz Zigbee standard in low power. The quadrature active mixer inside the proposed RF DCT provides enough high gain as well as sufficient linearity using a gain boosting technique. The measurement results for the proposed transmitter show very low power consumption of 7.8 mA, output power more than 0 dBm and ACPR (Adjacent Channel Power Ratio) of -30 dBc.

Development of a Small Gamma Camera Using NaI(Tl)-PSPMT or Breast Imaging (NaI(Tl) 섬광결정과 위치민감형 광전자증배관을 이용한 유방암 진단용 소형 감마카메라 개발)

  • Kim, J.H.;Choi, Y.;Kwon, H.S.;Kim, H.J.;Kim, S.E.;Choe, Y.S.;Kim, M.H.;Joo, K.S.;Kim, B.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.365-368
    • /
    • 1997
  • We are developing a small gamma camera or imaging malignant breast tumors. The small scintillation camera system consists of NaI(Tl) crystal ($60\;{\times}\;60\;{\times}\;6\;mm^3$) coupled to position sensitive photomultiplier tube (PSPMT), nuclear instrument module (NIM), analog to digital converter (ADC), and personal computer. High quality flood source image and hole mask image were obtained using the gamma camera developed in this study. Breast phantom containing $2{\sim}7\;mm$ diameter spheres was successfully imaged with parallel hole collimator. The obtained image displayed accurate activity distribution over the imaging field of view. Linearity and uniformity correction algorithms are being developed. It is believed that the developed small gamma camera could be useful or detection of malignant breast cancer.

  • PDF

Sensitivity Optimization of MEMS Gyroscope for Magnet-gyro Guidance System (자기-자이로 유도 장치를 위한 MEMS형 자이로의 민감도 최적화)

  • Lee, Inseong;Kim, Jaeyong;Jung, Eunkook;Jung, Kyunghoon;Kim, Jungmin;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper presents a sensitivity optimization of a MEMS (microelectromechanical systems) gyroscope for a magnet-gyro system. The magnet-gyro system, which is a guidance system for a AGV (automatic or automated guided vehicle), uses a magnet positioning system and a yaw gyroscope. The magnet positioning system measures magnetism of a cylindrical magnet embedded on the floor, and AGV is guided by the motion direction angle calculated with the measured magnetism. If the magnet positioning system does not measure the magnetism, the AGV is guided by using angular velocity measured with the gyroscope. The gyroscope used for the magnet-gyro system is usually MEMS type. Because the MEMS gyroscope is made from the process technology in semiconductor device fabrication, it has small size, low-power and low price. However, the MEMS gyroscope has drift phenomenon caused by noise and calculation error. Precision ADC (analog to digital converter) and accurate sensitivity are needed to minimize the drift phenomenon. Therefore, this paper proposes the method of the sensitivity optimization of the MEMS gyroscope using DEAS (dynamic encoding algorithm for searches). For experiment, we used the AGV mounted with a laser navigation system which is able to measure accurate position of the AGV and compared result by the sensitivity value calculated by the proposed method with result by the sensitivity in specification of the MEMS gyroscope. In experimental results, we verified that the sensitivity value through the proposed method can calculate more accurate motion direction angle of the AGV.

Design of a nonlinear ADC encoder to reduce the conversion errors in DBNS (DBNS 변환오차를 고려한 비선형 ADC 엔코더 설계)

  • Woo, Kyung-Haeng;Choi, Won-Ho;Kim, Jong-Soo;Choi, Jae-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.249-254
    • /
    • 2013
  • A fast multiplier and ADC are essential to process the analog signals in real time. The double-base number system(DBNS) is known as an efficient method for this purpose. The DBNS uses the numbers 2 and 3 as the base numbers simultaneously. The system has an advantage of fast multiplication, less chip area, and low power consumption compared to the binary multiplier. However, the inherent errors of the log number's intrinsic tolerance in DBNS are accumulated in a FIR digital filter, so the signal-to-noise ratio(SNR) has a tendency to be degraded. In this paper, the nonlinear encoder of ADC is designed to compensate the accumulated errors of DBNS by analysing the error distributions of various filter coefficients. The new ADC does not sacrifice its own advantages because the encoder circuits are modified only. The experiments were done with an FIR filters those were designed to have -70dB of SNR in stop band. The proposed nonlinear ADC encoder could drop the SNR to -45dB in stop band, in contrast to -35dB with the linear encoder.

A 0.8V 816nW Delta-Sigma Modulator Applicaiton for Cardiac Pacemaker (카디악 페이스메이커용 0.8V 816nW 델타-시그마 모듈레이터)

  • Lee, Hyun-Tae;Heo, Dong-Hun;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • This paper discusses theimplementation of the low-voltage, low-power, third-order, 1-bit switched capacitor delta-sigma modulator of the implantable cardiac pacemaker. The distributed, feed-forward structure and bulk-driven OTA were used in order to achieve an efficient operation under a supply voltage of 1V or lower. The designed modulator has a dynamic range of 49dB at 0.9V supply voltage and consumes 816nW of power. Such a significant reduction in power consumption allows diverse applications, not only in pacemakers, but also in implantable biomedical devices that operate with limited battery power. The core chip size of the modulator is $1000{\mu}m*500{\mu}m$ manufactured, with the $0.18{\mu}m$ CMOS standard process.

A 4-Channel Multi-Rate VCSEL Driver with Automatic Power, Magnitude Calibration using High-Speed Time-Interleaved Flash-SAR ADC in 0.13 ㎛ CMOS

  • Cho, Sunghun;Lee, DongSoo;Lee, Juri;Park, Hyung-Gu;Pu, YoungGun;Yoo, Sang-Sun;Hwang, Keum Cheol;Yang, Youngoo;Park, Cheon-Seok;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.274-286
    • /
    • 2016
  • This paper presents a 4-channel multi-rate vertical-cavity surface-emitting laser (VCSEL) driver. In order to keep the output power constant with respect to the process, voltage, temperature (PVT) variations, this research proposes automatic power and magnitude. For the fast settling time, the high-speed 10-bit time-interleaved Flash-successive approximation analog to digital converter (Flash-SAR ADC) is proposed and shared for automatic power and magnitude calibration to reduce the die area and power consumption. This chip is fabricated using $0.13-{\mu}m$ CMOS technology and the die area is $4.2mm^2$. The power consumption is 117.84 mW per channel from a 3.3 V supply voltage at 10 Gbps. The measured resolution of bias /modulation current for APC/AMC is 0.015 mA.

A Study on Seabed Interpretation System Using Supersonic Waves (초음파를 이용한 해저면 판독 시스템에 관한 연구)

  • 김재갑;김원중;황두진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.385-391
    • /
    • 2001
  • In this study, we will develop the sea surface interpretation system that can aware the target in the bottom of the sea. we will setup the database whose records would be the signal patterns of formation about mud, sand, rock and sea shell achieved by using supersonic. then we will convert analog signal received in fish detector to digital one using A/D converter So we can process and analyze this signal pattern then compare it to the one in our Database at the real time to identify the target in the bottom of the sea. After enough times of experiments from the background of the results that have been achieved from many studies(including a water tank experiment and a field investigation), we can aware the exact information of the sediment and the sand in the sea. By analyzing the first, second and third signal of the supersonic characters reflected from the body of a fish categorized by its family and from the body of shellfish, muddy sand, sand and rocks, We will develop the sea surface decipherment system which abstracts the first signal that shows the target in the bottom of the sea and makes the second and third signals filtering.

  • PDF

The Low Area 12-bit SAR ADC (저면적 12비트 연속 근사형 레지스터 아날로그-디지털 변환기)

  • Sung, Myeong-U;Choi, Geun-Ho;Kim, Shin-Gon;Rastegar, Habib;Tall, Abu Abdoulaye;Kurbanov, Murod;Choi, Seung-Woo;Pushpalatha, Chandrasekar;Ryu, Jee-Youl;Noh, Seok-Ho;Kil, Keun-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.861-862
    • /
    • 2015
  • In this paper we present a low area 12-bit SAR ADC (Successive Approximation Register Analog-to-Digital Converter). The proposed circuit is fabricated using Magnachip/SK Hynix 1-Poly 6-Metal $0.18-{\mu}m$ CMOS process, and it is powered by a 1.8-V supply. Total chip area is reduced by replacing the MIM capacitors with MOS capacitors instead of the capacitors consisting of overall part in chip area. The proposed circuit showed improved power dissipation of 1.9mW, and chip area of $0.45mm^2$ as compared to conventional research results at the power supply of 1.8V. The designed circuit also showed high SNDR (Signal-to-Noise Distortion Ratio) of 70.51dB, and excellent effective number of bits of 11.4bits.

  • PDF

A Range-Scaled 13b 100 MS/s 0.13 um CMOS SHA-Free ADC Based on a Single Reference

  • Hwang, Dong-Hyun;Song, Jung-Eun;Nam, Sang-Pil;Kim, Hyo-Jin;An, Tai-Ji;Kim, Kwang-Soo;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.98-107
    • /
    • 2013
  • This work describes a 13b 100 MS/s 0.13 um CMOS four-stage pipeline ADC for 3G communication systems. The proposed SHA-free ADC employs a range-scaling technique based on switched-capacitor circuits to properly handle a wide input range of $2V_{P-P}$ using a single on-chip reference of $1V_{P-P}$. The proposed range scaling makes the reference buffers keep a sufficient voltage headroom and doubles the offset tolerance of a latched comparator in the flash ADC1 with a doubled input range. A two-step reference selection technique in the back-end 5b flash ADC reduces both power dissipation and chip area by 50%. The prototype ADC in a 0.13 um CMOS demonstrates the measured differential and integral nonlinearities within 0.57 LSB and 0.99 LSB, respectively. The ADC shows a maximum signal-to-noise-and-distortion ratio of 64.6 dB and a maximum spurious-free dynamic range of 74.0 dB at 100 MS/s, respectively. The ADC with an active die area of 1.2 $mm^2$ consumes 145.6 mW including high-speed reference buffers and 91 mW excluding buffers at 100 MS/s and a 1.3 V supply voltage.

Design of QAPM Modulation for Low Power Short Range Communication and Application of Compressive Sensing (저전력 근거리 통신을 위한 QAPM 변조의 설계와 압축 센싱의 적용)

  • Kim, So-Ra;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.797-804
    • /
    • 2012
  • In this paper, we propose a QAPM(Quadrature Amplitude Position Modulation) modulation using compressive sensing for the purpose of power efficiency improvement. QAPM modulation is a combination technique of QAM (quadrature amplitude modulation) and PPM(Pulse Position Modulation). Therefore it can decrease the transmission power and improve BER performance. Moreover, even if the band width is widened when the number of positions is increased, high sparsity characteristic caused by position number can be applied to compressive sensing technique. Compressive sensing has recently studied as a method that can be successfully reconstructed from the small number of measurements for sparse signal. Therefore, the proposed system can lower price of receiver by reducing sampling rate and has performance improved by using QAPM modulation. And the results are confirmed through simulations.