DOI QR코드

DOI QR Code

Design of QAPM Modulation for Low Power Short Range Communication and Application of Compressive Sensing

저전력 근거리 통신을 위한 QAPM 변조의 설계와 압축 센싱의 적용

  • Kim, So-Ra (Department of Electronic Engineering, Chungbuk National University) ;
  • Ryu, Heung-Gyoon (Department of Electronic Engineering, Chungbuk National University)
  • Received : 2012.03.22
  • Accepted : 2012.06.15
  • Published : 2012.07.31

Abstract

In this paper, we propose a QAPM(Quadrature Amplitude Position Modulation) modulation using compressive sensing for the purpose of power efficiency improvement. QAPM modulation is a combination technique of QAM (quadrature amplitude modulation) and PPM(Pulse Position Modulation). Therefore it can decrease the transmission power and improve BER performance. Moreover, even if the band width is widened when the number of positions is increased, high sparsity characteristic caused by position number can be applied to compressive sensing technique. Compressive sensing has recently studied as a method that can be successfully reconstructed from the small number of measurements for sparse signal. Therefore, the proposed system can lower price of receiver by reducing sampling rate and has performance improved by using QAPM modulation. And the results are confirmed through simulations.

본 논문은 저전력 통신을 위하여, 압축 센싱에 적용한 QAPM 변조 방식을 제안한다. QAPM 변조 방식은 QAM 변조 방식과 PPM 변조 방식을 결합한 방식으로써, 자리(PPM의 posion) 개수가 늘어날수록 심볼 간의 거리가 멀어져 BER 성능과 전력 효율을 향상시킨다. 또한, 자리개수를 늘릴수록 대역이 손실 발생될 수 있으나, 성김(sparsity) 특성은 증가된다. 이러한 높은 성김 특성은 Nyquist 속도 이하의 샘플링으로도 완전하게 신호를 복원할 수 있는 압축 센싱에 적용하기에 매우 적합하다. 따라서 본 논문은 압축 센싱에 적용된 QAPM 시스템이 수신기에 있는 ADC(Analog Digital Converter)의 부담을 줄이면서도 BER 성능을 향상시키는 저전력 시스템임을 시뮬레이션을 통해 확인하였다.

Keywords

References

  1. Daniel Lewis, NICTA, "802.15.6 call for applications- response summary", P802.15-08-0407-03-00- 06, Jul. 2008.
  2. Changbo Long, Sasank Reddy, Sudhaker Pamarti, Lei He, and Tanay Karnik, "Power-efficient pulse width modulation DC/DC converters with zero voltage switching control", in Proc. Low Power Electronics and Design, ISLPED'06, pp. 326-329, Oct. 2006.
  3. S. H Cho, A. P. Chadrakasan, "A 6.5-GHz energy efficient BFSK modulator for wireless sensor applications", IEEE J. Solid-State Circuit, vol. 39, pp. 731-739, May 2004. https://doi.org/10.1109/JSSC.2004.826314
  4. D. Donoho, "Compressive sensing", IEEE Trans. Inform. Theory, vol. 52, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  5. R. G. Baraniuk, "Compressive sensing", IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 118- 120, 124, Jul. 2007.
  6. Jason Laska, Sami Kirolos, Marco Duarte, Tamer Ragheb, Richard Baraniuk, and Yehia Massoud, "Theory and implementation of an analog-to-information converter using random demodulation", IEEE Int.p, Circuits and Systems(ISCAS), New Orleans, Louisiana, 2007.
  7. D. Needell, J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples." Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301-302, May 2009. https://doi.org/10.1016/j.acha.2008.07.002
  8. Ye Li, Bertan Bakkaloglu, "A system level energy model and energy-quality evaluation for integrated transceiver front-ends", IEEE Trans. Very Large Scale Integration Systems, vol. 15, no. 1, pp. 90-103, Jan. 2007. https://doi.org/10.1109/TVLSI.2007.891095