Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2016.27.9.825

Zigbee Transmitter Using a Low-Power High-Gain Up-Conversion Mixer  

Baik, Seyoung (School of Electronics and Information Engineering, Korea Aerospace University)
Seo, Changwon (School of Electronics and Information Engineering, Korea Aerospace University)
Jin, Ho Jeong (School of Electronics and Information Engineering, Korea Aerospace University)
Cho, Choon Sik (School of Electronics and Information Engineering, Korea Aerospace University)
Publication Information
Abstract
This paper introduces a direct-conversion CMOS RF transmitter for the IEEE 802.15.4 standard with a low-power high-gain up-conversion mixer designed in $0.18{\mu}m$ process. The designed RF DCT(Direct Conversion Transmitter) is composed of differential DAC(Digital to Analog Converter), passive low-pass filter, quadrature active mixer and drive amplifier. The most important characteristic in designing RF DCT is to satisfy the 2.4 GHz Zigbee standard in low power. The quadrature active mixer inside the proposed RF DCT provides enough high gain as well as sufficient linearity using a gain boosting technique. The measurement results for the proposed transmitter show very low power consumption of 7.8 mA, output power more than 0 dBm and ACPR (Adjacent Channel Power Ratio) of -30 dBc.
Keywords
Direct Conversion Transmitter; High-Gain Up-Conversion Mixer; Zigbee; Low Power; ACPR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Ahidi, G. Pottie, and W. Kaiser, "Power-conscious design of wireless circuits and systems", Proc. IEEE, vol. 88, no. 10, pp. 1528-1545, Oct. 2000.   DOI
2 T. -K. Nguyen, V. Krizhanovskii, J. Lee, S. -K. Han, S. G. Lee, N. -S. Kim, and C. -S. Pyo, "A low-power RF direct-conversion receiver/transmitter for 2.4 GHz-band IEEE 802.15.4 standard in 0.18-mCMOS technology", IEEE Trans. Microw. Theory Tech. vol. 54, no. 12, pp. 4062-4071, Dec. 2006.   DOI
3 W. Kluge, "A fully integrated 2.4-GHz IEEE 802.15.4-compliant transceiver for ZigBee applications", IEEE J. Solid-State Circuits. vol. 41, no. 12, pp. 2767-2775, Dec. 2006.   DOI
4 Y. -I. Kwon, S. -G. Park, T. -J. Park, K. -S. Cho, and H. -Y. Lee, "An ultra low-power CMOS transceiver using various low-power techniques forLR-WPAN applications", IEEE Trans. Circuits Syst., vol. 59, no. 2, pp. 324-336, Feb. 2012.   DOI
5 L. Luh, J. Choma, Jr., and J. Draper, "A high-speed fully differential current switch", IEEE International Conference on Electronics, Circuits and Systems, vol. 3, pp. 343-346, 1998.
6 K. Wang, K. Ma, W. Ye, K. S. Yeo, H. Zhang, and Z. Wang, "Alow voltage low power highly linear CMOS quadrature mixer using transconductance cancellation technique", IEEE Int. MTT Symp. Dig., pp. 1-3, Jun. 2012.
7 D. Markovic, L. P. Alarcon, and J. M. Rabaey, "Ultralowpower design in near threshold region", Proceedings of the IEEE, 2010.
8 S. H. -L. Tu, S. C. -H. Chen, "A 5.26-GHz CMOS upconversion mixer for IEEE 802.11a WLAN", IEEE International Conference on Circuits and Systems for Communications, vol. 59, no. 2, pp. 820-823, May 2008.
9 Q. J. Gu, Z. Xu, H.-Y. Jian, B. Pan, X. Xiaojing, M-C. F. Chang, L. Wei, and H. Fetterman, "CMOS THz generator with frequency selective negative resistance tank", IEEE Trans. Terahertz Science Technol., vol. 2, no. 2, pp. 193-202, Mar. 2012.   DOI
10 C. S. Aitchison, M. Mbabele, M. R. Moazzam, Dj.-Budimir, and F. Ali, "lmprovement of third order intermodulation products of RF and microwave amplifiers by injection", IEEE MTT Transactions on Microwave Theory and Techniques, vo1. 49. no. 6, pp. l148-1154, Jun. 2001.   DOI
11 W. Cheng, "Noise and nonlinearity modeling of active mixers for fast and accurate estimation", IEEE Trans. Circuits and Systems I, vol. 58, no. 2, pp. 276-289, Feb. 2011.   DOI
12 B. Razavi, RF Microelectronics, 2nd Ed. Pearson, 2012.
13 J. -H. Kim, H. -W. An, and T. -Y. Yun, "A low-noise WLAN mixer using switched biasing technique", IEEE Microw. Wireless Compon. Lett. vol. 19, no. 10, pp. 650-652, Oct. 2009.   DOI
14 C. H. Wu, W. -H. Huang, "A high-linearity up-conversion mixer utilizing negative resistor", International Symposium on Signals, Systems and Electronics. vol. 2, Sept. 2010.
15 S. B. Patil, R. D. Kamphade, "A 2.4 GHz double balanced differential input single output low power transmitting mixer in TSMC 180 nm CMOS RF process", 2015 2nd International Conference on ICECS, pp. 1181-1186, Feb. 2015.
16 M. Asghari, M Yavari, "Using the gatebulk interaction and a fundamental current injection to attenuate IM3 and IM2 currents in RF transconductors", IEEE Transactions on Very Large Scale Integration(VLSI) Systems, vol. 24, no. 1, pp. 223-232, Jan. 2016.   DOI
17 X. Fan, C. Zhu, and Z. Lei, "A 2.4 GHz RF CMOS upconversion mixer for wireless sensor networks nodes", 2009 International Conference on WCSP, pp. 1-5, Nov. 2009.
18 S. A. Z. Murad, R. K. Pokharel, M. A. Abdelghany, H. Kanaya, and K. Yoshida, "High linearity 5.2 GHz CMOS up-conversion mixer using derivative superposition method", International Technical Conference of IEEE Region 10, TENCON 2010, 21-24, Nov. 2010.
19 Nam et al., "A 2.4-GHz low-power low-IF receiver and direct-conversion transmitter in 0.18 ${\mu}m$CMOS for IEEE 802.15.4 WPAN applications", IEEE Trans. Microwave Theory Tech., vol. 55, no. 4, pp. 682-689, Apr. 2007.   DOI
20 I. Kwon et al., "A fully integrated 2.4-GHz CMOS RF transceiver for IEEE 802.15.4", IEEE Radio Freq. Integr. Circuits Symp. Dig., San Francisco, CA, pp. 275-278, Jun. 2006.
21 C. Choi, J. Choi, M. Kim, H. Park, and I. Nam, "A low power 2.4 GHz CMOS Direct-conversion transmitter for IEEE 802.15.4", Int. Wireless Symp.(IWS), Xi'an, China, pp. 1-4, Mar. 2014.