• Title/Summary/Keyword: AlN films

Search Result 496, Processing Time 0.026 seconds

Growth of AlN Thin Film on Sapphire Substrates and ZnO Templates by RF-magnetron Sputtering (RF 마그네트론 스퍼터링법을 이용하여 사파이어 기판과 ZnO 박막 위에 증착한 AlN 박막의 특성분석)

  • Na, Hyun-Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.58-65
    • /
    • 2010
  • AlN thin films were deposited on sapphire substrates and ZnO templates by rf-magnetron sputtering. Powder-sintered AlN target was adopted for source material. Thickness of AlN layer was linearly dependent on plasma power from 50 to 110 W, and it decreased slightly when working pressure increased from 3 to 10 mTorr due to short mean free path of source material sputtered from AlN target by Ar working gas. When $N_2$ gas was mixed with Ar, the thickness of AlN layer decreased significantly because of low sputter yield of nitrogen. AlN layer was also deposited on ZnO template. However, it showed weak thermal stability that the interface between AlN and ZnO was deteriorated by rapid thermal annealing treatment above $700^{\circ}C$. In addition, ZnO layer was largely attacked by MOCVD ambient gas of hydrogen and ammonia around $700^{\circ}C$ through inferior AlN layer deposited by sputtering. And AlN layers were fully peeled off above $900^{\circ}C$.

Comparison of growth and properties of GaN with various AlN buffer layers on Si (111) substrate (Si (111) 기판 위에 다양한 AIN 완충층을 이용한 GaN 성장과 특성 비교)

  • 신희연;이정욱;정성훈;유지범;양철웅
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 2002
  • The growth of GaN films on Si substrate has many advantages in that Si is less expensive than sapphire substrate and that integration of GaN-based devices with Si substrate is easier The difference of lattice constant and thermal expansion coefficient between GaN and Si is larger than those between GaN and sapphire. However, which results in many defects into the grown GaN. In order to obtain high duality GaN films on Si substrate, we need to reduce defects using the buffer layer such as AlN. In this study, we prepared three types of AlN buffer layer with various crystallinity on Si (111) substrate using MOCVD, Sputtering and MOMBE methods. GaN was grown by MOCVD on three types of AlN/Si substrate. Using TEM and XRD, we carried out comparative investigation of growth and properties of GaN deposited on the various AlN buffers by characterizing lattice coherency, crystallinity, growth orientation and defects formed (voids, stacking faults, dislocations, etc). It is found that the crystallinity of AlN buffer layer has strong effects on growth of GaN. The AlN buffer layers grown by MOCVD and MOMBE showed the reduction of out-of-plane misorientation of GaN at the initial growth stage.

Annealing Effects of Gate-insulator on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (게이트절연막의 열처리가 Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 영향)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.365-370
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated on oxidized $n^+$ Si wafers. The thickness of ~30 nm $Al_2O_3$ films were deposited on the oxidized Si wafers by atomic layer deposition, which acted as the gate insulators of ZTO TTFTs. The $Al_2O_3$ films were rapid-annealed at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, and $1,000^{\circ}C$, respectively. Active layers of ZTO films were deposited on the $Al_2O_3/SiO_2$ coated $n^+$ Si wafers by rf magnetron sputtering. Mobility and threshold voltage were measured as a function of the rapid-annealing temperature. X-ray photoelectron spectroscopy (XPS) were carried out to observe the chemical bindings of $Al_2O_3$ films. The annealing effects of gate-insulator on the properties of TTFTs were analyzed based on the results of XPS.

Effects of bottom electrodes on the orientation of piezoelectric thin films and the frequency response of resonators in FBARs (체적 탄성파 공진기의 하부 전극이 압전 박막의 배향성 및 공진기의 압전 특성에 미치는 영향)

  • Lee, Myung-Ho;Jung, Jun-Phil;Lee, Jin-Bock;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1397-1399
    • /
    • 2002
  • Effects of bottom electrode materials (Al, Cu, Ti, and Mo), included in film bulk acoustic resonators (FBARs), on the orientation of piezoelectric AlN thin films and the frequency response characteristic of resonators were investigated. The texture coefficient (TC) for (002) orientation, crystallite size, full width half maximum (FWHM), and surface roughness of deposited AlN films were measured for the various bottom electrodes. The return tosses estimated from the frequency responses of fabricated resonators were also compared. Experimental results showed that the difference of lattice constant and thermal expansion coefficient between the bottom electrode and the AlN film were the most important factors for achieving a high performance resonator.

  • PDF

Effect of Electron Irradiation on the Surface Hardness and Wear Characteristic of CrAlN Thin Film Deposited on the SKD61 Mold Steel (전자빔 조사에 따른 CrAlN/SKD61의 표면경도 및 내마모도 개선효과)

  • Eom, Tae-Young;Song, Young-Hwan;Choi, Su-Hyun;Choi, Jin-Young;Heo, Sung-Bo;Kim, Jun-Ho;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.164-168
    • /
    • 2017
  • Intense electron beam was irradiated on the CrAlN thin films deposited in SKD61 under different incident energies and then the effect of electron beam irradiation on the enhancement of surface hardness and wear resistance was investigated. Surface hardness and wear resistance of the CrAlN films is increased proportionally with the electron beam energy. While the surface hardness of as deposited CrAlN film is Hv ($0.1g{\cdot}f$) 450, the hardness oflectron irradiated (600 eV) film is Hv ($0.1g{\cdot}f$) 2050. The width of wear track of the untreated SKD61 is $X\_{\mu}m$, while the track-width of the electron irradiated CrAlN (600 eV) film is $787{\mu}m$, respectively. From the observed results, it is supposed that the optimal electron beam irradiation can be one of the useful surface treatment technologies for the enhancement of surface hardness and wear resistance of CrAlN/SKD61, simultaneously.

Characteristics of TiN/Al, TiCN/Al films deposited by DC reactive magnetron sputtering (DC 반응성 마그네트론 스퍼터링법으로 TiN/Al, TiCN/Al 박막의 물성 평가)

  • Lee, Hyeon-Jun;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.107-107
    • /
    • 2012
  • 연료전지 분리판용 모재로서 사용되고 있는 스테인레스 스틸에 대해서는 많은 연구가 진행되어 왔으나, 알루미늄은 거의 연구가 진행되지 않고 있다. 따라서 이번 연구는 DC 반응성 마그네트론 스퍼터링법으로 알루미늄 기판 위에 TiN, TiCN 박막을 반응성 가스 유량별로 증착하여, 기계적 특성 및 내부식성 특성을 비교 검토하였다.

  • PDF

Fabrication and Structural Properties of Ge-Sb-Te Thin Film by MOCVD for PRAM Application (상변화 메모리 응용을 위한 MOCVD 방법을 통한 Ge-Sb-Te 계 박막의 증착 및 구조적인 특성분석)

  • Kim, Ran-Young;Kim, Ho-Gi;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.411-414
    • /
    • 2008
  • The germanium films were deposited by metal organic chemical vapor deposition using $Ge(allyl)_4$ precursors on TiAlN substrates. Deposition of germanium films was only possible with a presence of $Sb(iPr)_3$, which means that $Sb(iPr)_3$ takes a catalytic role by a thermal decomposition of $Sb(iPr)_3$ for Ge film deposition. Also, as Sb bubbler temperature increases, deposition rate of the Ge films increases at a substrate temperature of $370^{\circ}C$. The GeTe thin films were fabricated by MOCVD with $Te(tBu)_2$ on Ge thin film. The GeTe films were grown by the tellurium deposition at $230-250^{\circ}C$ on Ge films deposited on TiAlN electrode in the presence of Sb at $370^{\circ}C$. The GeTe film growth on Ge films depends on the both the tellurium deposition temperature and deposition time. Also, using $Sb(iPr)_3$ precursor, GeSbTe films with hexagonal structures were fabricated on GeTe thin films. GeSbTe films were deposited in trench structure with 200 nm*120 nm small size.

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures

  • Park, Soo-Young;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.264-267
    • /
    • 2015
  • AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.

Atomic layer deposition of Al-doped ZnO thin films using dimethylaluminum isopropoxide as Al dopant

  • Lee, Hui-Ju;Kim, Geon-Hui;U, Jeong-Jun;Jeon, Du-Jin;Kim, Yun-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.178-178
    • /
    • 2010
  • We have deposited aluminum-doped ZnO thin films on borosilicate glass by atomic layer deposition. Diethylzinc (DEZ) and dimethylaluminum isopropoxide (DMAIP) were used as the metal precursor and the Al-dopant, respectively. Water was used as an oxygen source. DMAIP was successfully used as an aluminum precursor for chemical vapor deposition and ALD. All deposited films showed n-type conduction. The resistivity decreased to a minimum and then increased with increasing the aluminum content. The carrier concentration increased and the carrier mobility decreased with increasing the DMAIP to DEZ pulse ratio. The average optical transmittance was nearly 80 % in the visible part of the spectrum. The absorption edge moved to the shorter wavelength region with increasing the DMAIP to DEZ pulse ratio. Our results indicate that DMAIP is suitable for Al doping of ZnO films.

  • PDF