Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.5.264

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures  

Park, Soo-Young (Department of Display Engineering, Doowon Technical University)
Han, Sang-Uk (Department of Display Engineering, Doowon Technical University)
Kim, Hyun-Hoo (Department of Display Engineering, Doowon Technical University)
Jang, Gun-Eik (Department of Advanced Materials Engineering, Chungbuk National University)
Lee, Yong-Jun (Technical Development Team, Sunda Korea)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.5, 2015 , pp. 264-267 More about this Journal
Abstract
AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.
Keywords
Solar energy material; Solar selective absorber; DC-magnetron sputter; Multi-layers; Absorptance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. D. Julkarnain, J. Hossain, K. S. Sharif, and K. A. Khan, J. Optoelect.& Adv. Mater., 13, 485 (2011).
2 S. Esposito, A. Antonaia, M. L. Addonizio, and S. Aprea, Thin Solid Films, 517, 6000 (2009). [DOI: http://dx.doi.org/10.1016/ j.tsf.2009.03.191]   DOI
3 R. C. Juang, Y. C. Yeh, B. H. Chang, W. C. Chen, and T. W. Chung, Thin Solid Films, 518, 5501 (2010). [DOI: http://dx.doi. org/10.1016/j.tsf.2010.04.025]   DOI
4 H. C. Barshilia, Sol. Energy Mater. & Sol. Cells, 130, 322 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.07.037]   DOI
5 Q. C. Zhang, M. S. Hadavi, K. D. Lee, and Y. G. Shen, J. Phys. D: Appl. Phys., 36, 723 (2003). [DOI: http://dx.doi.org/10.1088/0022-3727/36/6/315]   DOI
6 K. D. Lee, J. Kor. Sol. Energy Soc., 33, 31 (2013). [DOI: http://dx.doi.org/10.7836/kses.2013.33.4.031]   DOI
7 T. I. Ohm, W. T. Yeo, and D. C. Kim, J. Kor. Sol. Energy Soc., 33, 27 (2013). [DOI: http://dx.doi.org/10.7836/kses.2013.33.3.027]   DOI
8 A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, Sol. Energy Mater. & Sol. Cells, 91, 629 (2007). [DOI: http://dx.doi. org/10.1016/j.solmat.2006.12.001]   DOI
9 H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, Appl. Lett., 64, 166 (1994). [DOI: http://dx.doi. org/10.1063/1.111553]   DOI
10 E. Barrera-Calva, A. Avila, J. Mena, V. H. Lara, M. Ruiz, and J. Mendez-Vivar, Sol. Energy Mater. & Sol. Cells, 76, 387 (2003). [DOI: http://dx.doi.org/10.1016/S0927-0248(02)00290-8]   DOI
11 K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. F. Ohtani, and R. Beresford, Phys. Lett., 66, 3179 (1995).
12 F. C. Stedile, I. J. Baumvol, W. H. Schreiner, and F. L. Freire, J. Vac. Sci. Technol., 10, 3272 (1992). [DOI: http://dx.doi.org/10.1116/1.577854]   DOI
13 J. Chen, C. Guo, J. Chen, J. He, Y. Ren, and L. Hu, Mater. Lett., 133, 71 (2014). [DOI: http://dx.doi.org/10.1016/j.matlet.2014.06.159]   DOI
14 Q. C. Zhang, Sol. Energy Mater. & Sol. Cells, 52, 95 (1998). [DOI: http://dx.doi.org/10.1016/S0927-0248(97)00274-2]   DOI
15 I. T. Ritchie and B. Window, Appl. Opt., 16, 1438 (1977). [DOI: http://dx.doi.org/http://dx.doi.org/10.1364/AO.16.001438]   DOI
16 H. C. Barshilia, N. Selvakumar, and K. S. Rajam, Appl. Phys. Lett., 89, 1 (2006). [DOI: http://dx.doi.org/10.1063/1.2387897]   DOI