• Title/Summary/Keyword: Adhesion Evaluation

Search Result 378, Processing Time 0.026 seconds

Quality Characteristics of Sulgidduk with Adenophora remotiflora Powder (모시대 분말을 첨가한 설기떡의 품질 특성)

  • Jung, Jung-Suk;Shin, Seung-Mee;Kim, Ae-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2010
  • Sulgidduk samples containing 1, 2, and 4% Adenophora remotiflora powder and a control were examined for moisture content, gelatinization property, color, textural characteristics, and sensory qualities to determine the optimal ratio of Adenophora remotiflora powder in the formulation. The highest viscosity, lowest viscosity, final viscosity, setback and breakdown decreased as the contents of Adenophora remotiflora powder increased in the gelatinization property of flour blends of rice cake made with Adenophora remotiflora powder. The water content of rice cake with Adenophora remotiflora powder was 40.54~41.30% and there was no significant difference between samples with Adenophora remotiflora powder. L values indicating brightness were highest in the control group and all of the a values displayed green color indicating that they were negative. The b values were lowest in the control group and the values increased as the level of Adenophora remotiflora powder increased. Evaluation of the mechanical characteristics of rice cake with Adenophora remotiflora powder, hardness, cohesion, adhesion and chewiness were all higher in the control group and as its contents were rich, such properties were reduced. In addition, there was no significant difference between adhesion and chewiness. Adhesion and elasticity were low in the control group and as its contents were rich, such properties increased. The results of the sensory test revealed that the, control group containing 1% Adenophora remotiflora powder had the highest color, flavor, taste and overall preference.

Evaluation of Reinforced Materials and Epoxy Resins for Adhesion Repairing-Reinforced of RC Construction (RC구조물 접착 보수$\cdot$보강용 에폭시수지 및 보강재료의 재료특성 평가)

  • Park Yong-Kyu;Joo Eun-Hi;Lee Gun-Cheol;Byun Hang-Yong;Woo Jong-Wan;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.183-186
    • /
    • 2005
  • This study investigates material properties of epoxy resins and reinforced materials for adhesion repairing-reinforced of RC construction. According to the test. elasticity modulus of mortar indicated 16-26(GPa) and that of concrete was 18-27(GPa). It became decreased as mixture proportion, W/C and fluidity of both mortar and concrete increased In addition the elasticity modulus of epoxy resins exhibited around 45.3-220(GPa), while that of steel plate and Carbon Bar indicated 338(GPa) and 34.1 (GPa), respectively. It is obvious that individual materials had big different value of elasticity modulus. Meanwhile, thermal expansion coefficients of mortar was 10-13 ${\mu}\varepsilon$ /$^{\circ}C$ and that of concrete was 9-11 $\mu \varepsilon$ /$^{\circ}C$ The increase of mixture Voportion and W/C resulted in lower value of thermal expansion coefficients and the increase of flow and slump exhibited slightly higher value. The epoxy resin indicated 41-54 ${\mu}\varepsilon$ /$^{\circ}C$ which is 4-5 times larger value than concrete and steel plate and Carbon Bar was 11.93 ${\mu}\varepsilon$ /$^{\circ}C$ and -1.68 ${\mu}\varepsilon$ /$^{\circ}C$ respectively. Hence, the adhesion strength of the epoxy resins should be considered before it is used in field condition, due to different thermal expansion coefficient of each material.

  • PDF

Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding Nano SiC Fillers (나노 SiC 입자의 형상에 따른 탄소섬유 강화 에폭시 복합재료의 기계적 및 계면 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Kim, Je-Jun;Jang, Key-Wook;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.75-81
    • /
    • 2013
  • Epoxy matrix based composites were fabricated by adding SiC nano fillers. The interfacial properties of composites were varied with different shapes of SiC nano fillers. To investigate the shape effects on the interfacial properties, beta and whisker type SiC nano fillers were used for this evaluation. The dispersion states of nano SiC-epoxy nanocomposites were evaluated by capacitance measurements. FE-SEM was used to observe the fracture surface of different structures of SiC-epoxy nanocomposites and to investigate for reinforcement effect. Interfacial properties between carbon fiber and SiC-epoxy nanocomposites were also evaluated by ILSS (interlaminar shear strength) and IFSS (interfacial shear strength) tests. The interfacial adhesion of beta type nanocomposites was better than whisker type.

Surface Immobilization of Amphiphilic Comb-like Polymer on Polydimethylsiloxane and in vitro Cytotoxicity Assay (양친성 빗 모양 고분자의 PDMS 표면 고정화 및 세포독성 평가)

  • Choi, Jaeyoo;Jung, Jaeyeon;Cheng, Jie;Lee, Jonghwan;Hyun, Jinho;Kim, Hyunjoong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.70-75
    • /
    • 2010
  • It described the modification of polydimethylsiloxane (PDMS) with amphiphilic methyl methacrylate-based polyethylene glycol (PMMA-b-PEG) to enhance the hydrophilicity of a PDMS surface and cytotoxicity of it. PMMA-b-PEG solutions in water/ethanol mixture was spun-cast on the PDMS surface and the surface was characterized by long-term measurement of water contact angle. The morphology of PDMS surfaces coated with PMMA-b-PEG was characterized by field emission scanning electron microscopy and atomic force microscope. Cytotoxicity of the modified surfaces was investigated by MTT assay which would be necessary for the evaluation of tissue compatibility after implantation of the materials. Based on the MTT assay, PDMS coated with PMMA-b-PEG didn't show any significant cytotoxcity.

Biological Evaluation of Bone Marrow-Derived Stem Cells onto Different Wettability by RT-PCR (역전사 중합효소 연쇄반응을 이용한 표면 적심성에 따른 골수유래 줄기세포의 생물학적 평가)

  • 김은정;박종수;김문석;조선행;이종문;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.218-224
    • /
    • 2004
  • The adhesion and proliferation of mammalian cells on polymeric biomaterials depend on the surface characteristics such as wettability, chemistry, charge and roughness. In order to recognize the correlation between the adhesion and proliferation of human bone marrow derived stem cells (BMSCs) and surface property, radio frequency generated plasma treatment on low density polyethylene (LDPE) has been carried out. The modified LDPE surfaces were characterized by measuring the static water contact angle. The adhesion and proliferation of cells on LDPE films were characterized by cell counting and reverse transcription-polymerase chain reaction (RT-PCR). The water contact angle of the film surface decreased with plasma treatment time. Proto-oncogenes (c-myc, c-fos) and tumor suppressor gene (p153) showed maximum expression with contact angle of 60 ∼ 70$^{\circ}$ range of LDPE film. By cell counting, we confirmed that the rate of cell proliferation appeared the higher on the film surface of the contact angle of 60∼70$^{\circ}$ We concluded that the surface wettability is an important role for the growth and differentiation of BMSCs.

Evaluation of Adhesion Performance of High-Fireproofing Alumino-silicate Inorganic Mortar (알루미노 실리케이트계 고내화성 모르타르의 부착성능 평가)

  • Cho, Hyeon-Seo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.569-576
    • /
    • 2018
  • In modern society, a huge number of the buildings have been constructed with RC structure. RC structures have many structural instabilities due to earthquake, typhoon, construction fault, design phase errors. Therefore, many reinforcement methods are being implemented to solve this problem. In the reinforcement method, the organic epoxy adhesive used in the FRP reinforcing method is abruptly damaged when exposed to high temperature, which is directly connected to the fall of the reinforcing material. Therefore, the present study was conducted to develop inorganic refractory mortar with a certain level of adhesion ability to reduce the heat transferred to FRP reinforcement when exposed to high temperatures. As a result of the test, it showed high adhesion strength at room temperature condition with the inclusion of EVA resin, and showed no performance deterioration up to about $300^{\circ}C$ even under heating conditions. Also, it was confirmed that the backside temperature was lower as the thickness increased, and converged to a constant temperature of about $780^{\circ}C$ after 2 hours of heating.

An Evaluation of Moisture Sensitivity of Asphalt Concrete Pavement Due to Aging (노화에 따른 아스팔트 콘크리트 포장의 수분민감성 평가)

  • Kim, Kyungnam;Kim, Yooseok;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • Pavement distress and traffic accidents are caused by pot-hole. In addition, direct and indirect damages of road users are increasing, such as loss of life due to personal injury and damage to vehicles. Generally, the asphalt concrete pavements are continuously aging from the production process to the terminal performance period. Aging causes stripping due to cracks and moisture penetration and weakening the pavement structure to induce pot-hole. In this study, adhesion performance and moisture sensitivity were evaluated according to aging degree in order to investigate the effect of aging on asphalt pavement. As a result of the study, the viscosity of the asphalt binder was increased with aging and the bond strength of the aged was increased 2~3 times than that of the unaged. The results of accelerated aging test showed an increases in indirect tensile strength and the increase in the TSR (Tensile Strength Ratio) by 4.2~8.9 %. As a result, it is noted that the anti-stripping and adhesion performances of the aged asphalt concrete are improved compared to the unaged one under the aging conditions of asphalt binder coated on aggregates.

In vitro evaluation of a removable partial denture framework using multi-directionally forged titanium

  • Suzuki, Ginga;Shimizu, Satoshi;Torii, Mana;Tokue, Ai;Ying, Guo;Yoshinari, Masao;Hoshi, Noriyuki;Kimoto, Katsuhiko;Miura, Hiromi;Hayakawa, Tohru;Ohkubo, Chikahiro
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.369-375
    • /
    • 2020
  • PURPOSE. This study evaluated the availability of multi-directionally forged (MDF) titanium (Ti) as a component of removable partial dentures (RPDs). MDF-Ti remarkably improved the mechanical properties of RPDs due to its ultrafine-grained structure. MATERIALS AND METHODS. The wear resistance, plaque adhesion, and machinability of MDF-Ti were tested. As controls, commercially pure (CP) titanium was used for wear, plaque adhesion, and machinability tests. For wear resistance, the volume losses of the titanium teeth before and after wear tests were evaluated. Plaque adhesion was evaluated by the assay of Streptococcus mutans. In the machinability test, samples were cut and ground by a steel fissure bur and carborundum (SiC) point. An unpaired t-test was employed for the analysis of the significant differences between MDF-Ti and the control in the results for each test. RESULTS. Wear resistance and plaque adherence of MDF-Ti similar to those of CP-Ti (P>.05) were indicated. MDF-Ti exhibited significantly larger volume loss than CP-Ti in all conditions except 100/30,000 g/rpm in machinability tests (P<.05). CONCLUSION. Although the wear resistance and plaque adherence of MDF-Ti were comparable to those of controls, MDF-Ti showed better machinability than did CP-Ti. MDF-Ti could be used as a framework material for RPDs.

Performance Evaluation of Eco-friendly Insulating Finish According to the Addition Ratio of Granular Cork (입상 코르크 첨가율에 따른 친환경 단열마감재의 성능평가)

  • Kim, Yong-Gu;Kim, Yeon-Ho;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.148-149
    • /
    • 2020
  • Currently, the most commonly used EPS insulation material has been mainly used because its ease of adhesion with concrete. However, due to poor adhesion with wallpaper, separate adhesion needs to be strengthened and there are cases of breakage or grooves in the process of dismantling the mold. The biggest problem is that when a fire breaks out, various harmful substances are present and highly flammable. Cork used in this study is a truly eco-friendly building material that is taken from between the outer and inner bark of cork trees and does not damage the wood. Also, it is a porous material that is made up of countless cells and contains an air gap between the cells. It is very light in weight between 0.06 and 0.07 and has excellent insulation with a heat conductivity of 0.04W/mK. In addition, it has high stability in the topic of conversation because it does not produce harmful gas when burned and has self-sustaining properties. However, research on cork, an eco-friendly building material with excellent performance to date, is scarce Therefore, we encourage existing scholars to raise interest in new eco-friendly building materials through this study. It also aims to manufacture insulation boards with new inorganic properties using the low weight and heat conductivity held by the cork.

  • PDF

Suggestion and Design of GaN on Diamond Structure for an Ideal Heat Dissipation Effect and Evaluation of Heat Transfer Simulation as Different Adhesion Layer (이상적인 열방산 효과를 위한 GaN on Diamond 구조의 제안과 접합매개층 종류에 따른 열전달 시뮬레이션 비교)

  • Kim, Jong Cheol;Kim, Chan Il;Yang, Seung Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.270-275
    • /
    • 2017
  • Current progress in the development of semiconductor technology in applications involving high electron mobility transistors (HEMT) and power devices is hindered by the lack of adequate ways todissipate heat generated during device operation. Concurrently, electronic devices that use gallium nitride (GaN) substrates do not perform well, because of the poor heat dissipation of the substrate. Suggested alternatives for overcoming these limitations include integration of high thermal conductivity material like diamond near the active device areas. This study will address a critical development in the art of GaN on diamond (GOD) structure by designing for ideal heat dissipation, in order to create apathway with the least thermal resistance and to improve the overall ease of integrating diamond heat spreaders into future electronic devices. This research has been carried out by means of heat transfer simulation, which has been successfully demonstrated by a finite-element method.