DOI QR코드

DOI QR Code

An Evaluation of Moisture Sensitivity of Asphalt Concrete Pavement Due to Aging

노화에 따른 아스팔트 콘크리트 포장의 수분민감성 평가

  • 김경남 (경기대학교 대학원 토목공학과) ;
  • 김유석 (경기대학교 대학원 토목공학과) ;
  • 김낙석 (경기대학교 토목공학과)
  • Received : 2019.06.12
  • Accepted : 2019.07.01
  • Published : 2019.08.01

Abstract

Pavement distress and traffic accidents are caused by pot-hole. In addition, direct and indirect damages of road users are increasing, such as loss of life due to personal injury and damage to vehicles. Generally, the asphalt concrete pavements are continuously aging from the production process to the terminal performance period. Aging causes stripping due to cracks and moisture penetration and weakening the pavement structure to induce pot-hole. In this study, adhesion performance and moisture sensitivity were evaluated according to aging degree in order to investigate the effect of aging on asphalt pavement. As a result of the study, the viscosity of the asphalt binder was increased with aging and the bond strength of the aged was increased 2~3 times than that of the unaged. The results of accelerated aging test showed an increases in indirect tensile strength and the increase in the TSR (Tensile Strength Ratio) by 4.2~8.9 %. As a result, it is noted that the anti-stripping and adhesion performances of the aged asphalt concrete are improved compared to the unaged one under the aging conditions of asphalt binder coated on aggregates.

포트홀 발생 및 관련 교통사고 건수는 매년 꾸준히 증가하는 추세이며 이에 따른 인명피해, 차량파손에 따른 비용손실 등 도로 이용자의 직 간접적인 피해를 증가시키고 있다. 일반적으로 아스팔트 혼합물은 생산과정부터 시공 후 공용에 따라 지속적으로 노화가 진행된다. 포장 노화는 균열과 수분침투로 박리를 야기하고 반복적인 윤하중에 의해 포장구조를 약화시켜 포트홀을 유발하게 된다. 본 연구에서는 노화가 아스팔트 콘크리트 포장에 미치는 영향을 검토하기 위해 노화정도에 따른 부착성능 평가와 수분민감성 평가를 수행하였다. 연구결과 노화에 따라 아스팔트 바인더의 점성이 증가해 부착강도가 2~3배 이상 증가하였다. 또한 가속 노화시킨 아스팔트 혼합물의 경우 간접인장강도의 증가뿐만 아니라 TSR 값도 4.2~8.9 % 증가하는 것으로 나타났다. 이에 따라 골재에 아스팔트 바인더가 피복된 상태에서 노화가 진행될 경우 아스팔트 바인더와 골재의 부착력이 증가하여 박리 저항성이 향상되는 것으로 분석되었다.

Keywords

References

  1. AASHTO T 240 (2013). Standard method of test for effect of heat and air on a moving film of asphalt binder (Rolling thin-film oven test).
  2. AASHTO T 283 (2014). Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage.
  3. AASHTO TP 91 (2015). Determining asphalt binder bond strength by means of the Binder Bond Strength (BBS) test.
  4. Aguiar-Moya, J. P., Salazar-Delgado, J., Baldi-Sevilla, A., Leiva-Villacorta, F. and Loria-Salazar, L. (2015). "Effect of aging on adhesion properties of asphalt mixtures with the use of bitumen bond strength and surface energy measurement tests." Journal of the Transportation Research Board, No. 2505, Transportation Research Board, Washington, D.C., pp. 57-65.
  5. ASTM D 2872 (2019). Standard test method for effect of heat and air on a moving film of asphalt (Rolling thin-film oven test).
  6. ASTM D 454 (2004). Standard test method for rubber deterioration by heat and air pressure.
  7. ASTM D 572 (2004). Standard test method for rubber-deterioration by heat and oxygen.
  8. Bahia, H. U., Hanz, A., Kanitpong, K. and Wen, H. (2007). Testing methods to determine aggregate/asphalt adhesion properties and potential moisture damage, WHRP 07-02, Wisconsin Highway Research Program, Madison, Wisconsin.
  9. Jo, M. H., Yun, S. U. and Lee, Y. H. (2013). "Asphalt concrete pavement pothole: Repair method." Magazine of Korea Society of Road Engineers, Vol. 15, No. 2, pp. 43-51.
  10. Jung, J. H., Cho, B. J., Park, N. W. and Kim, K. W. (2007). "Study of artificial aging procedure for asphalt mixtures." Int. J. Highw. Eng., KSRE, Vol. 9, No. 4, pp. 45-54.
  11. Kim, K. N., Jo, S. H., Kim, N. S. and Lee, D. S. (2018). "A study on performance evaluation of new asphalt surface reinforcement method (ASRM) for preventive maintenance." J. Korean Soc. Civ. Eng., KSCE, Vol. 38, No. 2, pp. 311-317. https://doi.org/10.12652/Ksce.2018.38.2.0311
  12. Kim, K. N., Kim, S. H. and Kim, N. S. (2017). "A study on algorithm for materials take-off using pothole detection system." J. Korean Soc. Civ. Eng., KSCE, Vol. 37, No. 3, pp. 603-610. https://doi.org/10.12652/Ksce.2017.37.3.0603
  13. Kim, S. W., Lee, D. H., Lee, S. T., Kim, Y. S. and Kim, K. W. (2015). "Characterization of asphalt mixture at the point of pothole occurrence." Proc. of the KSRE Conf., KSRE, p. 27.
  14. Kim, Y. S. and Kim, N. S. (2018). "Evaluation of anti-stripping performance in asphalt concrete using byproduct ash from circulating fluidized bed boiler." J. Korean Soc. Civ. Eng., KSCE, Vol. 38, No. 2, pp. 319-325. https://doi.org/10.12652/Ksce.2018.38.2.0319
  15. Korea Institute of Civil Engineering and Building Technology (KICT) (2012). Development of road pavement construction quality management system against climate change (2nd Final Report).
  16. KS F 2398 (2017). Standard method for resistance of compacted asphalt mixtures to moisture induced damage.
  17. Lee, K. H., Cho, K. R., Lee, B. S. and Song, T. S. (2008). "Evaluation of dynamic modulus based on aged asphalt binder." Journal Korean Soc. Hazard Mitig., Vol. 8, No. 3, pp. 51-58.
  18. Little, D. N. and Jones, D. R. IV. (2003). Chemical and mechanical mechanisms of moisture damage in hot mix asphalt pavements, National Seminar in Moisture Sensitivity, San Diego, California.
  19. National Assembly (2013). Pothole caused by the use of sub-standard materials is need to fundamental solution urgently, Ministry of Land, Infrastructure and Transport Committee.
  20. Read, J. and Whiteoak, D. (2003). The shell bitumen handbook, Shell Bitumen, Surrey.
  21. Shin, O. C. (2017). Effect of change in adhesive and cohesive characteristics between asphalt binder and aggregate due to moisture on pavement material damage, Ph.D. Dissertation, Kyung Hee University.
  22. Yener, E. and Hinislioglu, S. (2014). "Effects of exposure time and temperature in aging test on asphalt binder properties." International Journal of Civil and Structural Engineering, Vol. 5, No. 2, pp. 112-124.