DOI QR코드

DOI QR Code

Evaluation of Adhesion Performance of High-Fireproofing Alumino-silicate Inorganic Mortar

알루미노 실리케이트계 고내화성 모르타르의 부착성능 평가

  • Cho, Hyeon-Seo (Department of Architectural Engineering, Korea National University of Transportation) ;
  • Lee, Gun-Cheol (Department of Architectural Engineering, Korea National University of Transportation)
  • Received : 2018.10.31
  • Accepted : 2018.11.20
  • Published : 2018.12.20

Abstract

In modern society, a huge number of the buildings have been constructed with RC structure. RC structures have many structural instabilities due to earthquake, typhoon, construction fault, design phase errors. Therefore, many reinforcement methods are being implemented to solve this problem. In the reinforcement method, the organic epoxy adhesive used in the FRP reinforcing method is abruptly damaged when exposed to high temperature, which is directly connected to the fall of the reinforcing material. Therefore, the present study was conducted to develop inorganic refractory mortar with a certain level of adhesion ability to reduce the heat transferred to FRP reinforcement when exposed to high temperatures. As a result of the test, it showed high adhesion strength at room temperature condition with the inclusion of EVA resin, and showed no performance deterioration up to about $300^{\circ}C$ even under heating conditions. Also, it was confirmed that the backside temperature was lower as the thickness increased, and converged to a constant temperature of about $780^{\circ}C$ after 2 hours of heating.

현대사회에서 건축물은 대다수가 RC구조로 건설되어지고 있다. RC구조의 건축물은 시공상의 하자발생, 설계단계에서의 오차발생 등과 같은 인위적인 요인과 지진, 태풍 등의 자연적인 요인에 의해 구조적 불안정성이 발생하고 이를 해결하기 위해 다수의 보수보강공법이 이루어지고 있다. 보강공법 중 FRP 보강공법에서 사용하는 유기계 에폭시 접착제는 고온에 노출되었을 때 부착파괴가 급격하게 발생하게 되며 이는 보강재의 탈락으로 직결된다. 따라서 본 연구에서는 고온에 노출되었을 때 FRP 보강재에 전달되는 열을 감소시켜주며 일정수준 이상의 부착성능을 가진 무기계 내화 모르타르의 개발을 목적으로 실험을 진행하였다. 실험 결과 EVA수지의 포함으로 상온조건에서 높은 부착강도를 나타내었으며, 가열조건에서도 약 $300^{\circ}C$까지 전혀 성능저하를 나타내지 않았다. 또한, 이면온도는 두께가 증가할수록 낮았으며, 가열 2시간 이후에에서는 약 $780^{\circ}C$의 일정한 온도로 수렴되는 것을 확인하였다.

Keywords

GCSGBX_2018_v18n6_569_f0001.png 이미지

Figure 1. FRP suface redamation method

GCSGBX_2018_v18n6_569_f0002.png 이미지

Figure 2. Covalent bond of alumino silicate inorganic binder

GCSGBX_2018_v18n6_569_f0003.png 이미지

Figure 3. SEM photograph of cenosphere

GCSGBX_2018_v18n6_569_f0004.png 이미지

Figure 4. Cenosphere used in experiments

GCSGBX_2018_v18n6_569_f0005.png 이미지

Figure 5. Test progress

GCSGBX_2018_v18n6_569_f0006.png 이미지

Figure 6. Table flow test

GCSGBX_2018_v18n6_569_f0007.png 이미지

Figure 7. Bond strength according to heating temperature change

GCSGBX_2018_v18n6_569_f0008.png 이미지

Figure 8. Sectional failure formation by high temperature

GCSGBX_2018_v18n6_569_f0009.png 이미지

Figure 9. SEM photograph of inorganic binder(before heating)

GCSGBX_2018_v18n6_569_f0010.png 이미지

Figure 10. SEM photograph of inorganic binder(after heating)

GCSGBX_2018_v18n6_569_f0011.png 이미지

Figure 11. Backside temperature test

Table 1. Mix proportions

GCSGBX_2018_v18n6_569_t0001.png 이미지

Table 2. Specimen condition

GCSGBX_2018_v18n6_569_t0002.png 이미지

Table 3. Chemical composition of binder

GCSGBX_2018_v18n6_569_t0003.png 이미지

Table 4. Chemical composition of alkali-activator

GCSGBX_2018_v18n6_569_t0004.png 이미지

Table 5. Chemical composition of hybrid epoxy

GCSGBX_2018_v18n6_569_t0005.png 이미지

Table 6. Physical and chemical composition of cenosphere

GCSGBX_2018_v18n6_569_t0006.png 이미지

Table 7. Physical composition of EVA polymer

GCSGBX_2018_v18n6_569_t0007.png 이미지

References

  1. Lim JW, Seo SY. Fire-Protection Method to Improve the Fire-Resistance Capacity of Near-Surface-Mounted Fiber Reinforced Polymer. Journal of the Regional Association of Architectural Institute of Korea. 2018 Feb;20(5):141-8.
  2. Chung L, Park HS. Structural performance and fire resistance capacity of inorganic polymer composites for carbon sheets exposed to high temperature. Journal of the Korea Concrete Institute. 1998 Oct;10(5):109-15.
  3. Kim WK, Kim HJ, Lee SH. Degradation properties of alkali-activated alumino-silicate composite body exposed to high temperature. Proceedings of the Korea Concrete Institute; 2005. Nov 5; Incheon University, Incheon, Korea, Seoul (Korea): Korea Concrete Institute; 2005. p. 627-30.
  4. Yang WH, Lee SH, Song TH. Microscopic analysis of hardened aluminosilicate inorganic binder according to the mole ratio of aluminium and silicon. Proceedings of the Architectural Institute of Korea; 2007 Oct 26-27; Chungbuk National University, Daejeon, Korea. Seoul (Korea): Architectural Institute of Korea; 2007. p. 611-4.
  5. Hwang TH, Song TH, Im CS. An experimental study on the physical properties of inorganic mortar with alumino silicate. Journal of Architectural Institute of Korea Structure & Construction. 2010 Mar;26(3):61-8.
  6. Phair. J. W., Smith. J. D., Van Deventer. J. S.. Characteristics of aluminosilicate hydrogels related to commercial "Geopolymers". Materials letters. 2003 Oot;57(28):4356-67. https://doi.org/10.1016/S0167-577X(03)00325-2
  7. Heo JO. Properties of Non-Sintered Cement Mortar using Sryrene-Butadiene Rubber [master's thesis]. [Gyeongsan (Korea)]: Yeungnam University; 2015. 73 p.
  8. Lee WJ, Hwang HJ, Han KS, Hwang KT, Cho WS, Kim JH. The effect of particle size distribution on the physical and optical properties of cenosphere. Korean Journal of Materials Research. 2017 Jul;27(7):351-6. https://doi.org/10.3740/MRSK.2017.27.7.351
  9. Seo CW, Kwon JH, Park JS, Lim KJ. Analysis of Electrical Properties of Cenosphere/Epoxy Composite for Eco-friendly Insulation Material. Proceeding of Korean Institute of Electrical Engineers; 2015 Jul 15-17; Deogyusan Resort, Muju, Korea, Seoul (Korea): The Korean Institute of Electrical Engineers; 2015. p. 1126-7.
  10. Lee JE, Lee JK. Properties of Cenosphere Particle In the Fly Ash Generated from the Pulverized Coal Power Plant. Jounal of Korean Society of Environmental Engineers. 2000 Oct;22(10):1881-91.