• 제목/요약/키워드: Additive material

검색결과 689건 처리시간 0.026초

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun;Oh, Si Hyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.67-73
    • /
    • 2021
  • Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

광경화 3D 프린팅 공정을 위한 실리카 복합소재 합성 및 특성 분석 (Synthesis and Characterization of Silica Composite for Digital Light Processing)

  • 이진욱;남산;황광택;김진호;김응수;한규성
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.23-29
    • /
    • 2019
  • Three-dimensional(3D) printing is a process for producing complex-shaped 3D objects by repeatedly stacking thin layers according to digital information designed in 3D structures. 3D printing can be classified based on the method and material of additive manufacturing process. Among the various 3D printing methods, digital light processing is an additive manufacturing technique which can fabricate complex 3D structures with high accuracy. Recently, there have been many efforts to use ceramic material for an additive manufacturing process. Generally, ceramic material shows low processability due to its high hardness and strength. The introduction of additive manufacturing techniques into the fabrication of ceramics will improve the low processability and enable the fabrication of complex shapes and parts. In this study, we synthesize silica composite material that can be applied to digital light processing. The rheological and photopolymeric properties of the synthesized silica composite are investigated in detail. 3D objects are also successfully produced using the silica composite and digital light processing.

센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구 (Additive Manufacturing for Sensor Integrated Components)

  • 정임두;이민식;우영진;김경태;유지훈
    • 한국분말재료학회지
    • /
    • 제27권2호
    • /
    • pp.111-118
    • /
    • 2020
  • The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.

Modeling of Mechanical Properties of Concrete Mixed with Expansive Additive

  • Choi, Hyeonggil;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.391-399
    • /
    • 2015
  • This study modeled the compressive strength and elastic modulus of hardened cement that had been treated with an expansive additive to reduce shrinkage, in order to determine the mechanical properties of the material. In hardened cement paste with an expansive additive, hydrates are generated as a result of the hydration between the cement and expansive additive. These hydrates then fill up the pores in the hardened cement. Consequently, a dense, compact structure is formed through the contact between the particles of the expansive additive and the cement, which leads to the manifestation of the strength and elastic modulus. Hence, in this study, the compressive strength and elastic modulus were modeled based on the concept of the mutual contact area of the particles, taking into consideration the extent of the cohesion between particles and the structure formation by the particles. The compressive strength of the material was modeled by considering the relationship between the porosity and the distributional probability of the weakest points, i.e., points that could lead to fracture, in the continuum. The approach used for modeling the elastic modulus considered the pore structure between the particles, which are responsible for transmitting the tensile force, along with the state of compaction of the hydration products, as described by the coefficient of the effective radius. The results of an experimental verification of the model showed that the values predicted by the model correlated closely with the experimental values.

소결첨가재에 의한 텅스텐의 기계적 특성평가 (Evaluation on Mechanical Properties of Tungsten by Sintering Additive Content)

  • 이상필;이진경
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.621-626
    • /
    • 2022
  • Tungsten is a high melting point metal unlike other steel materials, and it is difficult to manufacture because of its high melting temperature. In this study, pressure sintering process method was applied to manufacture the tungsten materials at low temperature. Therefore, it is necessary to densify the sintered material by using a sintering additive. Studies have been conducted on how the amount of titanium for sintering tungsten affects the mechanical properties of tungsten in this study. In order to secure the densification mechanism of tungsten powder during the sintering process, the characteristics of the sintered tungsten material according to the change of titanium content were evaluated. It was investigated the relationship between sintering parameters and mechanical properties for densification of microstructures. The sintered tungsten materials according to sintering additive content showed high sintered density (about 16.31g/cm3) and flexural strength (about 584 MPa) when the content of sintering additive was 3 wt%. However, as the content of the sintering additive increases, mechanical property of flexural strength is decreased, and the porosity is increased due to the heterogeneous sintering around titanium.

바리스터의 전기적 특성 (The Electrical Characteristics of Varistor.)

  • 홍경진;장동환;조재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.52-56
    • /
    • 2001
  • The Breakdown electric field of ZnO semiconductor devices in voltage-current characteristics was increased by increasing of additive materials. The specimen that has not additive materials was not formed spinel structure. The critical voltage that has not spinel structure was 235[V]. When the additive materials has 0.5 and 2[mol%], the Breakdown electric field was 840 and 758[V] in each additive materials. The Breakdown electric field of varistors as a factor of voltage and current was increased by addition of oxide antimony. The varistors that has oxide antimony was linearly increased in low electric field.

  • PDF

시멘트 혼화재로서 제지슬러지 소각재의 재활용 특성 (A Study on the Reusability of Incinerated Paper Mill Sludge Ash as Cement Additive)

  • 주소영;연익준;이민희;박준규;김광렬
    • 환경위생공학
    • /
    • 제18권2호
    • /
    • pp.34-41
    • /
    • 2003
  • The purpose of this study is to examine the effect of stabilization disposal and recycling on incinerated paper mill sludge ash as cement additives. It was investigated chemical(pH, ICP, TGA XRD) and physical(PDA, SEM) characteristics of the incineration ash. And the pozzolanic characteristics of incineration ash was applied to cement as additive to increase the compressive strength. The results were that the pH characteristic of incineration ash was strong alkalinity, the content of silica and alumina as a pozzolanic material was 50.97%, and the average particle size was $5.03{\mu}m$ respectively. When the ash contents as cement additive were varied in 0~15%(wt) of cement weight to explore the effect of the compressive strength on the solidified cement mortar, the proper amount of the incineration ash substituted was about 5~l0%(wt). Therefore we found that using the incineration ash as cement additive obtains the recycling of waste material, the stabilization disposal, the reduction of waste disposal expense, and the protection of environmental problem, too.

Silyl-group functionalized organic additive for high voltage Ni-rich cathode material

  • Jang, Seol Heui;Jung, Kwangeun;Yim, Taeeun
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1345-1351
    • /
    • 2018
  • To allow stable cycling of layered nickel-rich cathode material at high voltage, silyl-functionalized dimethoxydimethylsilane is proposed as a multi-functional additive. In contrast to typical functional additive, dimethoxydimethylsilane does not make artificial cathode-electrolyte interfaces by electrochemical oxidation because it is quite stable under anodic polarization. We find that dimethoxydimethylsilane mainly focuses on scavenging nucleophilic fluoride species that can be produced by electrolyte decomposition during cycling, leading to improving interfacial stability of both nickel-rich cathode and graphite anode. As a result, the cell cycled with dimethoxydimethylsilane-controlled electrolyte exhibits 65.7% of retention after 100 cycle, which is identified by systematic spectroscopic analyses for the cycled cell.

Preparation and Characterization of Antibacterial Dental Resin Cement Material

  • Kim, Duck-Hyun;Jung, Hwi-Su;Kim, Sun-Hun;Sung, A-Young
    • 대한화학회지
    • /
    • 제62권2호
    • /
    • pp.93-98
    • /
    • 2018
  • Bis-GMA, TEGDMA, and camphorquinone were used as the main material, cross-linking agent, and photoinitiator, respectively. In addition, 2-isocyanatoethyl methacrylate was used as an additive for high strength, while the 3-hydroxypyridine was used as an additive for antibacterial activity. Photopolymerization was also carried out at a 440-480 nm wavelength and at about $1000mW/cm^2$ intensity for about 40 seconds. The breaking strength measurement of the samples showed that the breaking strength increased along with increasing the addition ratio of IEM, while it took less time until the polymerization was complete, thereby suggesting that the degree of polymerization has the tendency to increase. And also, compared to the size of the clear zone formed by ampicillin, the 3-hydroxypyridine group exhibited antimicrobial activity induced by ampicillin. The results of this study suggest that the use of 2-isocyanatoethyl methacrylate as an additive for high strength and 3-hydroxypyridine as an additive for improved antibacterial activity would improve the usability of the fabricated polymer as a dental resin cement material with high functionality.

Formation Characteristics of Precipitated Calcium Carbonate by Carbonation Process

  • 김치호;석민광;김양도
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2021
  • The characteristics and morphology of precipitated calcium carbonate (PCC) particles produced by carbonation process with various experimental conditions are investigated in this study. The crystal structures of PCC formed by carbonation process are calcite and aragonite. The crystal structure of PCC particles synthesized without adipic acid additive is calcite only, regardless of the reaction temperature. Needle-like shape aragonite phase started to form at reactor temperature of 80℃ with the adipic acid additive. Particle size of the single phase calcite PCC synthesized without adipic acid additive is about 1 ~ 3 ㎛, with homogenous distribution. The aragonite PCC also shows uniform size distribution. The reaction temperature and concentration of adipic acid additive do not show any significant effects on the particle size distribution. Aragonite phase grown to a large aspect ratio of needle-like shape showed relatively improved whiteness. The measured whiteness value of single calcite phase is about 95.95, while that of the mixture of calcite and aragonite is about 99.11.