Browse > Article
http://dx.doi.org/10.21289/KSIC.2022.25.4.621

Evaluation on Mechanical Properties of Tungsten by Sintering Additive Content  

Lee, Sang-Pill (Department of Mechanical Engineering, Dongeui University)
Lee, Jin-Kyung (Division of Mechanical, Automotive, Robot Component Engineering, Dongeui University)
Publication Information
Journal of the Korean Society of Industry Convergence / v.25, no.4_2, 2022 , pp. 621-626 More about this Journal
Abstract
Tungsten is a high melting point metal unlike other steel materials, and it is difficult to manufacture because of its high melting temperature. In this study, pressure sintering process method was applied to manufacture the tungsten materials at low temperature. Therefore, it is necessary to densify the sintered material by using a sintering additive. Studies have been conducted on how the amount of titanium for sintering tungsten affects the mechanical properties of tungsten in this study. In order to secure the densification mechanism of tungsten powder during the sintering process, the characteristics of the sintered tungsten material according to the change of titanium content were evaluated. It was investigated the relationship between sintering parameters and mechanical properties for densification of microstructures. The sintered tungsten materials according to sintering additive content showed high sintered density (about 16.31g/cm3) and flexural strength (about 584 MPa) when the content of sintering additive was 3 wt%. However, as the content of the sintering additive increases, mechanical property of flexural strength is decreased, and the porosity is increased due to the heterogeneous sintering around titanium.
Keywords
Flexural Strength; Melting point; Sintered Density; Sintering; Sintering Additive; Tungsten;
Citations & Related Records
연도 인용수 순위
  • Reference
1 박광모, 이상필, 이진경, 한국산업융합학회논문집, 24,3,289-294, (2021).
2 Y. B. Chun, S. Kang, T. K. Noh, D. W. Kim, S. Lee, Y. H. Cho, Y. B. Jeong, J. Nucl. Mater., 455, (2014).
3 T. Hirai. J. Nucl. Mater., 463, 1248-1251, (2015).   DOI
4 T. Meshii and T. Yamaguchi, Procedia Structural Integrity, 2, 697-703, (2016).
5 J. Ongena, Y. Ogawa, Energy Policy 96, 770-778, (2016).   DOI
6 R. A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, A. Loarte, M. Merola, A. Sashala Naik, R. Mitteau, M. Sugihara, B. Bazylev, P. C. Stangeby, J. of Nuclear Materials, S48-S56, (2013).
7 A. F. Rowcliffe, L. M. Garrison, Y. Yamamoto, L. Tan, Y. Katoh, Fusion Engineering and Design, 135, 290-301, (2018).
8 T. S. Byun J. H. Yoon, D. T. Hoelzer, Y. B. Lee, S. H. Kang, S. A. Maloy, J. Nucl. Mater. 449, 290-299, (2014).   DOI
9 C. Lai, J. Wang, F. Zhou, W. Liu, N. Miao, J. of Alloys and Compounds, 735, 2685-2693, (2018).   DOI
10 L. Tan, L. L. Snead, Y. Katoh, J. Nucl. Mater., 478, 42-49, (2016).   DOI
11 M. S. Tillack, A. R. Raffray, X. R. Wang, S. Malang, S. A. Khalik, M. Yoda, D. Youchison, Fusion Engineering and Design. 86, 71-98, (2011).
12 M. Rieth, S. L. Dudarev, S. M. Gonzales de Vicente, J. Aktaa, T. Ahlgren, S. Antusch, J. of Nuclear materials, 432, 482-500, (2013).   DOI