Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00850

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials  

Jung, Kwangeun (Department of Chemistry, Incheon National University)
Oh, Si Hyoung (Center for Energy Storage Research, Korea Institute of Science and Technology)
Yim, Taeeun (Department of Chemistry, Incheon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.1, 2021 , pp. 67-73 More about this Journal
Abstract
Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.
Keywords
Lithium Ion Battery; Nickel-Rich Cathode; Additive; Phosphate; Cathode-Electrolyte Interphases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson and J.O. Thomas, J. Mater. Chem., 2009, 19(1), 82-88.   DOI
2 M. Xu, W. Li and B.L. Lucht, J. Power Sources, 2009, 193(2), 804-809.   DOI
3 J.-G. Han, I. Park, J. Cha, S. Park, S. Park, S. Myeong, W. Cho, S.-S. Kim, S.Y. Hong, J. Cho and N.-S. Choi, ChemElectroChem, 2017, 4(1), 56-65.   DOI
4 T. Yim and Y.-K. Han, ACS Appl. Mater. Interfaces, 2017, 9(38), 32851-32858.   DOI
5 Y. Lin, H. Zhang, X. Yue, L. Yu and W. Fan, J. Electroanal. Chem., 2019, 832, 408-416.   DOI
6 J.W. Fergus, J. Power Sources, 2010, 195(4), 939-954.   DOI
7 B. Scrosati, J. Hassoun and Y.-K. Sun, Energy Environ. Sci, 2011, 4(9), 3287-3295.   DOI
8 S. Zeng, L. Li, L. Xie, D. Zhao, N. Wang and S. Chen, ChemSusChem, 2017, 10(17), 3378-3386.   DOI
9 Y.-X. Yin, S. Xin, Y.-G. Guo and L.-J. Wan, Angew. Chem. Int. Ed., 2013, 52(50), 13186-13200.   DOI
10 X. Yu, Y. Lyu, L. Gu, H. Wu, S.-M. Bak, Y. Zhou, K. Amine, S.N. Ehrlich, H. Li, K.-W. Nam and X.-Q. Yang, Adv. Energy Mater., 2014, 4(5), 1300950.   DOI
11 Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak and K. Amine, Nat. Mater., 2009, 8(4), 320-324.   DOI
12 S. Hwang, S.M. Kim, S.-M. Bak, K.Y. Chung and W. Chang, Chem. Mater., 2015, 27(17), 6044-6052.   DOI
13 S.-T. Myung, F. Maglia, K.-J. Park, C.S. Yoon, P. Lamp, S.-J. Kim and Y.-K. Sun, ACS Energy Lett., 2017, 2(1), 196-223.   DOI
14 D. Zeng, J. Cabana, J. Breger, W.-S. Yoon and C.P. Grey, Chem. Mater., 2007, 19(25), 6277-6289.   DOI
15 H.-J. Noh, S. Youn, C.S. Yoon and Y.-K. Sun, J. Power Sources, 2013, 233, 121-130.   DOI
16 C. Liang, F. Kong, R.C. Longo, S. Kc, J.-S. Kim, S. Jeon, S. Choi and K. Cho, J. Phys. Chem. C, 2016, 120(12), 6383-6393.   DOI
17 Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.-T. Myung and K. Amine, Nat. Mater., 2012, 11(11), 942-947.   DOI
18 L. Zhang, T. Dong, X. Yu, Y. Dong, Z. Zhao and H. Li, j.materresbull, 2012, 47(11), 3269-3272.
19 W. Cho, S.-M. Kim, J.H. Song, T. Yim, S.-G. Woo, K.-W. Lee, J.-S. Kim and Y.-J. Kim, J. Power Sources, 2015, 282, 45-50.   DOI
20 S. Neudeck, F. Walther, T. Bergfeldt, C. Suchomski, M. Rohnke, P. Hartmann, J. Janek and T. Brezesinski, ACS Appl. Mater. Interfaces, 2018, 10(24), 20487-20498.   DOI
21 J.H. Lee, C.S. Yoon, J.-Y. Hwang, S.-J. Kim, F. Maglia, P. Lamp, S.-T. Myung and Y.-K. Sun, Energy Environ. Sci, 2016, 9(6), 2152-2158.   DOI
22 T. Yim, K.S. Kang, J. Mun, S.H. Lim, S.-G. Woo, K.J. Kim, M.-S. Park, W. Cho, J.H. Song, Y.-K. Han, J.-S. Yu and Y.-J. Kim, J. Power Sources, 2016, 302, 431-438.   DOI
23 K. Heo, J.-S. Lee, H.-S. Kim, J. Kim and J. Lim, J. Electrochem. Soc., 2017, 164(12), A2398-A2402.   DOI
24 S. Dong, Y. Zhou, C. Hai, J. Zeng, Y. Sun, Y. Shen, X. Li, X. Ren, G. Qi, X. Zhang and L. Ma, Ceramics International, 2019, 45(1), 144-152.   DOI
25 H.Q. Pham, E.-H. Hwang, Y.-G. Kwon and S.-W. Song, ChemComm, 2019, 55(9), 1256-1258.
26 J.-S. Lee, K. Heo, H.-S. Kim, M.-Y. Kim, J. Kim, S.-W. Kang and J. Lim, J. Alloys Compd., 2019, 781, 553-559.   DOI
27 J. Li, L.E. Downie, L. Ma, W. Qiu and J.R. Dahn, J. Electrochem. Soc., 2015, 162(7), A1401-A1408.   DOI
28 M. Wang, R. Zhang, Y. Gong, Y. Su, D. Xiang, L. Chen, Y. Chen, M. Luo and M. Chu, Solid State Ion., 2017, 312, 53-60.   DOI
29 A. Iqbal, L. Chen, Y. Chen, Y.-x. Gao, F. Chen and D.-c. Li, Int. J. Miner. Metall. Mater, 2018, 25(12), 1473-1481.   DOI
30 Q. Gan, N. Qin, Y. Zhu, Z. Huang, F. Zhang, S. Gu, J. Xie, K. Zhang, L. Lu and Z. Lu, ACS Appl. Mater. Interfaces, 2019, 11(13), 12594-12604.   DOI
31 L. Wu, K.-W. Nam, X. Wang, Y. Zhou, J.-C. Zheng, X.-Q. Yang and Y. Zhu, Chem. Mater., 2011, 23(17), 3953-3960.   DOI
32 S. Hwang, S.M. Kim, S.-M. Bak, B.-W. Cho, K.Y. Chung, J.Y. Lee, W. Chang and E.A. Stach, ACS Appl. Mater. Interfaces, 2014, 6(17), 15140-15147.   DOI
33 H.-R. Kim, S.-G. Woo, J.-H. Kim, W. Cho and Y.-J. Kim, J. Electroanal. Chem., 2016, 782, 168-173.   DOI
34 L. Liang, G. Hu, F. Jiang and Y. Cao, J. Alloys Compd., 2016, 657, 570-581.   DOI
35 F. Schipper, E.M. Erickson, C. Erk, J.-Y. Shin, F.F. Chesneau and D. Aurbach, J. Electrochem. Soc., 2017, 164(1), A6220-A6228.   DOI
36 J. Cho, Y.J. Kim, T.-J. Kim and B. Park, Angew. Chem. Int. Ed., 2001, 40(18), 3367-3369.   DOI
37 D. Li, Y. Kato, K. Kobayakawa, H. Noguchi and Y. Sato, J. Power Sources, 2006, 160(2), 1342-1348.   DOI
38 S. Neudeck, F. Strauss, G. Garcia, H. Wolf, J. Janek, P. Hartmann and T. Brezesinski, ChemComm, 2019, 55(15), 2174-2177.
39 X. Lu, X. Li, Z. Wang, H. Guo, G. Yan and X. Yin, Appl. Surf. Sci., 2014, 297, 182-187.   DOI
40 V.-C. Ho, S. Jeong, T. Yim and J. Mun, J. Power Sources, 2020, 450, 227625.   DOI
41 H. Kim, M.G. Kim, H.Y. Jeong, H. Nam and J. Cho, Nano Lett., 2015, 15(3), 2111-2119.   DOI
42 B.-J. Chae and T. Yim, J. Power Sources, 2017, 360, 480-487.   DOI
43 B.-J. Chae, J.H. Park, H.J. Song, S.H. Jang, K. Jung, Y.D. Park and T. Yim, Electrochim. Acta, 2018, 290, 465-473.   DOI
44 H.J. Song, S.H. Jang, J. Ahn, S.H. Oh and T. Yim, J. Power Sources, 2019, 416, 1-8.   DOI
45 Y.-K. Han, J. Yoo and T. Yim, Electrochim. Acta, 2016, 215, 455-465.   DOI
46 K. Kim, Y. Kim, S. Park, H.J. Yang, S.J. Park, K. Shin, J.-J. Woo, S. Kim, S.Y. Hong and N.-S. Choi, J. Power Sources, 2018, 396, 276-287.   DOI
47 B. Zhang, N. Laszczynski and B.L. Lucht, Electrochim. Acta, 2018, 281, 405-409.   DOI
48 H. Zhang, J. Xu and J. Zhang, Front. Mater., 2019, 6(309),1-10.   DOI
49 Y. Lin, X. Yue, H. Zhang, L. Yu, W. Fan and T. Xie, Electrochim. Acta, 2019, 300, 202-207.   DOI
50 S. Wang, S. Chen, W. Gao, L. Liu and S. Zhang, J. Power Sources, 2019, 423, 90-97.   DOI
51 K. Beltrop, S. Klein, R. Nolle, A. Wilken, J.J. Lee, T.K.J. Koster, J. Reiter, L. Tao, C. Liang, M. Winter, X. Qi and T. Placke, Chem. Mater., 2018, 30(8), 2726-2741.   DOI
52 S.H. Jang, K. Jung and T. Yim, Curr. Appl. Phys., 2018, 18(11), 1345-1351.   DOI
53 N. von Aspern, S. Roser, B. Rezaei Rad, P. Murmann, B. Streipert, X. Monnighoff, S.D. Tillmann, M. Shevchuk, O. Stubbmann-Kazakova, G.-V. Roschenthaler, S. Nowak, M. Winter and I. Cekic-Laskovic, J. Fluorine Chem., 2017, 198, 24-33.   DOI
54 C.-G. Shi, C.-H. Shen, X.-X. Peng, C.-X. Luo, L.-F. Shen, W.-J. Sheng, J.-J. Fan, Q. Wang, S.-J. Zhang, B.-B. Xu, J.-J. Xian, Y.-M. Wei, L. Huang, J.-T. Li and S.-G. Sun, Nat. Energy, 2019, 65, 104084.
55 L. Liu, W. Gao, Y. Cui and S. Chen, J. Alloys Compd., 2020, 820, 153069.   DOI
56 Y.-M. Song, J.-G. Han, S. Park, K.T. Lee and N.-S. Choi, J. Mater. Chem. A, 2014, 2(25), 9506-9513.   DOI
57 Z. Zhou, Y. Ma, L. Wang, P. Zuo, X. Cheng, C. Du, G. Yin and Y. Gao, Electrochim. Acta, 2016, 216, 44-50.   DOI
58 C. Peebles, R. Sahore, J.A. Gilbert, J.C. Garcia, A. Tornheim, J. Bareno, H. Iddir, C. Liao and D.P. Abraham, J. Electrochem. Soc., 2017, 164(7), A1579-A1586.   DOI
59 L. Wang, Y. Ma, Q. Li, Y. Cui, P. Wang, X. Cheng, P. Zuo, C. Du, Y. Gao and G. Yin, Electrochim. Acta, 2017, 243, 72-81.   DOI
60 S. Tan, Z. Zhang, Y. Li, Y. Li, J. Zheng, Z. Zhou and Y. Yang, J. Electrochem. Soc., 2013, 160(2), A285-A292.   DOI
61 S. Mai, M. Xu, X. Liao, J. Hu, H. Lin, L. Xing, Y. Liao, X. Li and W. Li, Electrochim. Acta, 2014, 147, 565-571.   DOI
62 S. Li, T. Yang, W. Wang, J. Lu, X. Zhao, W. Fan, X. Zuo and J. Nan, Electrochim. Acta, 2020, 352, 136492.   DOI
63 S. Mai, M. Xu, X. Liao, L. Xing and W. Li, J. Power Sources, 2015, 273, 816-822.   DOI
64 S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure and D.L. Wood, Carbon, 2016, 105, 52-76.   DOI
65 K. Abe, Y. Ushigoe, H. Yoshitake and M. Yoshio, J. Power Sources, 2006, 153(2), 328-335.   DOI
66 X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu and J. Nan, J. Power Sources, 2013, 229, 308-312.   DOI
67 D. Aurbach, Y Ein?Ely and A Zaban, J. Electrochem. Soc., 1994, 141(1), L1-L3.   DOI