Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future, Energy Environ. Sci. 4 (2011) 3287-3295. https://doi.org/10.1039/c1ee01388b
- A. Yoshino, The birth of the lithium-ion battery, Angew. Chem. Int. Ed. 51 (2012) 5798-5800. https://doi.org/10.1002/anie.201105006
- J.W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Sources 195 (2010) 939-954. https://doi.org/10.1016/j.jpowsour.2009.08.089
- Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100 (2001) 101-106. https://doi.org/10.1016/S0378-7753(01)00887-4
- M. Armand, J.-M. Tarascon, Building better batteries, Nature 451 (2008) 652-657. https://doi.org/10.1038/451652a
- A. Manthiram, J.C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives, Adv. Energy Mater. 6 (2016) 1501010. https://doi.org/10.1002/aenm.201501010
- T. Yim, K.S. Kang, J. Mun, S.H. Lim, S.-G. Woo, K.J. Kim, M.-S. Park, W. Cho, J.H. Song, Y.-K. Han, J.-S. Yu, Y.-J. Kim, Understanding the effects of a multifunctionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials, J. Power Sources 302 (2016) 431-438. https://doi.org/10.1016/j.jpowsour.2015.10.051
-
J. Li, L.E. Downie, L. Ma, W. Qiu, J.R. Dahn, Study of the failure mechanisms of
$LiNi_{0.8}Mn_{0.1}Co_{0.1}O_2$ cathode material for lithium ion batteries, J. Electrochem. Soc. 162 (2015) A1401-A1408. https://doi.org/10.1149/2.1011507jes -
S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Understanding the degradation mechanisms of
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material in lithium ion batteries, Adv. Energy Mater. 4 (2014) 1300787. https://doi.org/10.1002/aenm.201300787 -
M. He, C.-C. Su, C. Peebles, Z. Feng, J.G. Connell, C. Liao, Y. Wang, I.A. Shkrob, Z. Zhang, Mechanistic insight in the function of phosphite additives for protection of
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode in high voltage Li-Ion cells, ACS Appl. Mater. Interfaces 8 (2016) 11450-11458. https://doi.org/10.1021/acsami.6b01544 - W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed. 54 (2015) 4440-4457. https://doi.org/10.1002/anie.201409262
- C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics 2 (2014) 132-154. https://doi.org/10.3390/inorganics2010132
-
Y. Koyama, H. Arai, I. Tanaka, Y. Uchimoto, Z. Ogumi, Defect chemistry in layered LiMO2 (M = Co, Ni, Mn, and
$Li_{1/3}Mn_{2/3}$ ) by first-prinsiples calculations, Chem. Mater. 24 (2012) 3886-3894. https://doi.org/10.1021/cm3018314 -
H.J. Yu, Y.M. Qian, M.R. Otani, D.M. Tang, S.H. Guo, Y.B. Zhu, H.S. Zhou, Study of the lithium/nickel ions exchange in the layered
$LiNi_{0.42}Mn_{0.42}Co_{0.16}O_2$ cathode material for lithium ion batteries: experimental and first-principles calculations, Energy Environ. Sci. 7 (2014) 1068-1078. https://doi.org/10.1039/c3ee42398k -
H. Zheng, Q. Sun, G. Liu, X. Song, V.S. Battaglia, Correlation between dissolution behaviour and electrochemical cycling performance for
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ -based cells, J. Power Sources 207 (2012) 134-140. https://doi.org/10.1016/j.jpowsour.2012.01.122 -
C. Liang, F. Kong, R.C. Longo, S. KC, J.-S. Kim, S. Jeon, S. Choi, K. Cho, Unraveling the origin of instability in Ni-Rich
$LiNi_{1-2X}Co_XMn_XO_2$ (NCM) cathode materials, J. Phys. Chem. C 120 (2016) 6383-6393. - K.S. Kang, S. Choi, J. Song, S.-G. Woo, Y.N. Jo, J. Choi, T. Yim, J.-S. Yu, Y.-J. Kim, Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature, J. Power Sources 253 (2014) 48-54. https://doi.org/10.1016/j.jpowsour.2013.12.024
-
S.K. Martha, J. Nanda, G.M. Veith, N.J. Dudney, Electrochemical and rate performance study of high-voltage lithium-rich composition:
$Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$ , J. Power Sources 199 (2012) 220. https://doi.org/10.1016/j.jpowsour.2011.10.019 - T. Kawamura, A. Kimura, M. Egashira, S. Okada, J.-I. Yamaki, Thermal stability of alkyl carbonate mixed-solvent electrolyte for lithium ion cells, J. Power Sources 104 (2002) 260-264. https://doi.org/10.1016/S0378-7753(01)00960-0
- Y. Okamoto, Ab inition calculations of thermal decomposition mechanism of LiPF6- based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 160 (2013) A404-A409. https://doi.org/10.1149/2.020303jes
- D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems, J. Power Sources 68 (1997) 91-98. https://doi.org/10.1016/S0378-7753(97)02575-5
-
S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, The mechanism of HF formation in
$LiPF_6$ based organic carbonate electrolytes, Electrochem. Commun. 14 (2012) 47-50. https://doi.org/10.1016/j.elecom.2011.10.026 - V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci. 4 (2011) 3243-3262. https://doi.org/10.1039/c1ee01598b
- C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta 51 (2006) 3872-3883. https://doi.org/10.1016/j.electacta.2005.11.015
- T. Joshi, K.S. Eom, G. Yushin, T.F. Fuller, Effect of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries, J. Electrochem. Soc. 161 (2014) A1915-A1921. https://doi.org/10.1149/2.0861412jes
- S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon 105 (2016) 52-76. https://doi.org/10.1016/j.carbon.2016.04.008
- H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of vinylene carbonate derived SEI layers on graphite anode, J. Electrochem. Soc. 151 (2004) A1659-A1669. https://doi.org/10.1149/1.1785795
- P. Murray-Rust, J.P. Glusker, Directional hydrogen bonding to sp2- and sp3-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions, J. Am. Chem. Soc. 106 (1984) 1018-1025. https://doi.org/10.1021/ja00316a034
- Carey, A. Francis, Richard J. Sundberg, Advanced Organic Chemistry Part A: Structure and Mechanisms, fifth ed., Springer, Germany, 2006.
- S.H. Jang, T. Yim, Effect of silyl ether-functionalized dimethoxydimethylsilane on electrochemical performance of Ni-rich NCM cathode, ChemPhysChem 18 (2017) 3402-3406. https://doi.org/10.1002/cphc.201700921
- A.S. Pilcher, H.L. Ammon, P. DeShong, Utilization of tetrabutylammonium (Triphenylsilyl)Difluorosilicate as a fluoride source for nucleophilic fluorination, J. Am. Chem. Soc. 117 (1995) 5166-5167. https://doi.org/10.1021/ja00123a025
- R.K. Sharma, J.L. Fry, Instability of anhydrous tetra-normal-alkylammonium fluorides, J. Org. Chem. 48 (1983) 2112-2114. https://doi.org/10.1021/jo00160a041
- J.W. Emsley, J. Feeney, L.H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, 2th ed., Pergamon Press, London, 1968.
- B.K. Hunter, L.W. Reeves, Chemical shifts for compounds of the group IV elements silicon and tin, Can. J. Chem. 46 (1968) 1399-1414. https://doi.org/10.1139/v68-229
- S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources 162 (2006) 1379-1394. https://doi.org/10.1016/j.jpowsour.2006.07.074
-
C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of
$LiPF_6$ -based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 152 (2005) A2327-A2334. https://doi.org/10.1149/1.2083267 -
H. Yang, G.V. Zhuang, P.N. Ross, Thermal stability of
$LiPF_6$ salt and Li-ion battery electrolytes containing$LiPF_6$ , J. Power Sources 161 (2006) 573-579. https://doi.org/10.1016/j.jpowsour.2006.03.058 -
T. Kawamura, S. Okada, J.-I. Yamaki, Decomposition reaction of
$LiPF_6$ -based electrolytes for lithium ion cells, J. Power Sources 156 (2006) 547-554. https://doi.org/10.1016/j.jpowsour.2005.05.084 - M. Xu, W. Li, B.L. Lucht, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries, J. Power Sources 193 (2009) 804-809. https://doi.org/10.1016/j.jpowsour.2009.03.067
-
C. Peebles, R. Sahore, J.A. Gilbert, J.C. Garcia, A. Tornheim, J. Bareno, H. Iddir, C. Liao, D.P. Abraham, Tris (trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: mechanistic insights into differences during
$LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ -graphite full cell cycling, J. Electrochem. Soc. 164 (2017) A1579-A1586. https://doi.org/10.1149/2.1101707jes - X. Wang, X. Zheng, Y. Liao, Q. Huang, L. Xing, M. Xu, W. Li, Maintaining structural integrity of 4.5V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive, J. Power Sources 15 (2017) 108-116.
- L. Yang, B.L. Lucht, Inhibition of electrolyte oxidation in lithium ion batteries with electrolyte additives, Electrochem. Solid State Lett. 12 (2009) A229-A231. https://doi.org/10.1149/1.3238486
-
D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson, J.O. Thomas, A comparative XPS surface study of
$Li_2FeSiO_4$ /C cycled with LiTFSI-and$LiPF_6$ -based electrolytes, J. Mater. Chem. 19 (2009) 82-88. https://doi.org/10.1039/B813099J - K. Edstrom, T. Gustafsson, J.O. Thomas, The cathode-electrolyte interface in a Liion battery, Electrochim. Acta 50 (2004) 397-403. https://doi.org/10.1016/j.electacta.2004.03.049
- D. Bar-Tow, E. Peled, L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-Ion batteries, J. Electrochem. Soc. 146 (1999) 824-832. https://doi.org/10.1149/1.1391688
- K. Kanamura, H. Tamura, Z.-I. Takehara, XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts, J. Electroanal. Chem. 333 (1992) 127-142. https://doi.org/10.1016/0022-0728(92)80386-I
- J.-Y. Eom, I.-H. Jung, J.-H. Lee, Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries, J. Power Sources 196 (2011) 9810-9814. https://doi.org/10.1016/j.jpowsour.2011.06.095
-
B. Markovsky, A. Rodkin, G. Salitra, Y. Talyosef, D. Aurbach, H.-J. Kim, The impact of
$Co^{2+}$ ions in solutions on the performance of$LiCoO_2$ , Li, and lithiated graphite electrodes, J. Electrochem. Soc. 151 (2004) A1068-A1076. https://doi.org/10.1149/1.1759697 - S. Komaba, N. Kumagai, Y. Kataoka, Influence of manganese (II), cobalt (II), and nickel (II) additives in electrolyte on performance of graphite anode for lithium-ion batteries, Electrochim. Acta 47 (2002) 1229-1239. https://doi.org/10.1016/S0013-4686(01)00847-7
Cited by
- Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook vol.7, pp.15, 2018, https://doi.org/10.1039/c9ta00126c
- Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges vol.5, pp.None, 2018, https://doi.org/10.1021/acsenergylett.0c00468
- Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries vol.6, pp.1, 2018, https://doi.org/10.3390/batteries6010008
- A Review of Lithium-Ion Battery Fire Suppression vol.13, pp.19, 2018, https://doi.org/10.3390/en13195117
- Surface‐Modified Ni‐Rich Layered Oxide Cathode Via Thermal Treatment of Poly(Vinylidene Fluoride) for Lithium‐Ion Batteries vol.41, pp.11, 2020, https://doi.org/10.1002/bkcs.12118
- Ni‐Rich Layered Cathode Materials by a Mechanochemical Method for High‐Energy Lithium‐Ion Batteries vol.5, pp.46, 2018, https://doi.org/10.1002/slct.202003884
- A Novel Electrolyte Additive Enables High-Voltage Operation of Nickel-Rich Oxide/Graphite Cells vol.12, pp.None, 2018, https://doi.org/10.1021/acs.jpclett.1c00803
- Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials vol.12, pp.1, 2021, https://doi.org/10.33961/jecst.2020.00850
- Lithium Bis(trimethylsilyl) Phosphate as a Novel Bifunctional Additive for High-Voltage LiNi1.5Mn0.5O4/Graphite Lithium-Ion Batteries vol.13, pp.19, 2018, https://doi.org/10.1021/acsami.1c02572
- High-voltage liquid electrolytes for Li batteries: progress and perspectives vol.50, pp.18, 2018, https://doi.org/10.1039/d1cs00450f
- A Review of Degradation Mechanisms and Recent Achievements for Ni‐Rich Cathode‐Based Li‐Ion Batteries vol.11, pp.48, 2018, https://doi.org/10.1002/aenm.202103005
- A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects vol.305, pp.None, 2018, https://doi.org/10.1016/j.apenergy.2021.117849