Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.016

Silyl-group functionalized organic additive for high voltage Ni-rich cathode material  

Jang, Seol Heui (Department of Chemistry, Incheon National University)
Jung, Kwangeun (Department of Chemistry, Incheon National University)
Yim, Taeeun (Department of Chemistry, Incheon National University)
Abstract
To allow stable cycling of layered nickel-rich cathode material at high voltage, silyl-functionalized dimethoxydimethylsilane is proposed as a multi-functional additive. In contrast to typical functional additive, dimethoxydimethylsilane does not make artificial cathode-electrolyte interfaces by electrochemical oxidation because it is quite stable under anodic polarization. We find that dimethoxydimethylsilane mainly focuses on scavenging nucleophilic fluoride species that can be produced by electrolyte decomposition during cycling, leading to improving interfacial stability of both nickel-rich cathode and graphite anode. As a result, the cell cycled with dimethoxydimethylsilane-controlled electrolyte exhibits 65.7% of retention after 100 cycle, which is identified by systematic spectroscopic analyses for the cycled cell.
Keywords
Lithium ion battery; Silyl functional group; Electrolyte; Cathode; Additive;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Liang, F. Kong, R.C. Longo, S. KC, J.-S. Kim, S. Jeon, S. Choi, K. Cho, Unraveling the origin of instability in Ni-Rich $LiNi_{1-2X}Co_XMn_XO_2$ (NCM) cathode materials, J. Phys. Chem. C 120 (2016) 6383-6393.
2 S.K. Martha, J. Nanda, G.M. Veith, N.J. Dudney, Electrochemical and rate performance study of high-voltage lithium-rich composition: $Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$, J. Power Sources 199 (2012) 220.   DOI
3 T. Kawamura, A. Kimura, M. Egashira, S. Okada, J.-I. Yamaki, Thermal stability of alkyl carbonate mixed-solvent electrolyte for lithium ion cells, J. Power Sources 104 (2002) 260-264.   DOI
4 Y. Okamoto, Ab inition calculations of thermal decomposition mechanism of LiPF6- based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 160 (2013) A404-A409.   DOI
5 D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems, J. Power Sources 68 (1997) 91-98.   DOI
6 S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, The mechanism of HF formation in $LiPF_6$ based organic carbonate electrolytes, Electrochem. Commun. 14 (2012) 47-50.   DOI
7 V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci. 4 (2011) 3243-3262.   DOI
8 C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta 51 (2006) 3872-3883.   DOI
9 K.S. Kang, S. Choi, J. Song, S.-G. Woo, Y.N. Jo, J. Choi, T. Yim, J.-S. Yu, Y.-J. Kim, Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature, J. Power Sources 253 (2014) 48-54.   DOI
10 T. Joshi, K.S. Eom, G. Yushin, T.F. Fuller, Effect of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries, J. Electrochem. Soc. 161 (2014) A1915-A1921.   DOI
11 S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon 105 (2016) 52-76.   DOI
12 H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of vinylene carbonate derived SEI layers on graphite anode, J. Electrochem. Soc. 151 (2004) A1659-A1669.   DOI
13 P. Murray-Rust, J.P. Glusker, Directional hydrogen bonding to sp2- and sp3-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions, J. Am. Chem. Soc. 106 (1984) 1018-1025.   DOI
14 Carey, A. Francis, Richard J. Sundberg, Advanced Organic Chemistry Part A: Structure and Mechanisms, fifth ed., Springer, Germany, 2006.
15 S.H. Jang, T. Yim, Effect of silyl ether-functionalized dimethoxydimethylsilane on electrochemical performance of Ni-rich NCM cathode, ChemPhysChem 18 (2017) 3402-3406.   DOI
16 A.S. Pilcher, H.L. Ammon, P. DeShong, Utilization of tetrabutylammonium (Triphenylsilyl)Difluorosilicate as a fluoride source for nucleophilic fluorination, J. Am. Chem. Soc. 117 (1995) 5166-5167.   DOI
17 R.K. Sharma, J.L. Fry, Instability of anhydrous tetra-normal-alkylammonium fluorides, J. Org. Chem. 48 (1983) 2112-2114.   DOI
18 S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources 162 (2006) 1379-1394.   DOI
19 J.W. Emsley, J. Feeney, L.H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, 2th ed., Pergamon Press, London, 1968.
20 B.K. Hunter, L.W. Reeves, Chemical shifts for compounds of the group IV elements silicon and tin, Can. J. Chem. 46 (1968) 1399-1414.   DOI
21 C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of $LiPF_6$-based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 152 (2005) A2327-A2334.   DOI
22 H. Yang, G.V. Zhuang, P.N. Ross, Thermal stability of $LiPF_6$ salt and Li-ion battery electrolytes containing $LiPF_6$, J. Power Sources 161 (2006) 573-579.   DOI
23 T. Kawamura, S. Okada, J.-I. Yamaki, Decomposition reaction of $LiPF_6$-based electrolytes for lithium ion cells, J. Power Sources 156 (2006) 547-554.   DOI
24 M. Xu, W. Li, B.L. Lucht, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries, J. Power Sources 193 (2009) 804-809.   DOI
25 C. Peebles, R. Sahore, J.A. Gilbert, J.C. Garcia, A. Tornheim, J. Bareno, H. Iddir, C. Liao, D.P. Abraham, Tris (trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: mechanistic insights into differences during $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$-graphite full cell cycling, J. Electrochem. Soc. 164 (2017) A1579-A1586.   DOI
26 D. Bar-Tow, E. Peled, L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-Ion batteries, J. Electrochem. Soc. 146 (1999) 824-832.   DOI
27 X. Wang, X. Zheng, Y. Liao, Q. Huang, L. Xing, M. Xu, W. Li, Maintaining structural integrity of 4.5V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive, J. Power Sources 15 (2017) 108-116.
28 L. Yang, B.L. Lucht, Inhibition of electrolyte oxidation in lithium ion batteries with electrolyte additives, Electrochem. Solid State Lett. 12 (2009) A229-A231.   DOI
29 D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson, J.O. Thomas, A comparative XPS surface study of $Li_2FeSiO_4$/C cycled with LiTFSI-and $LiPF_6$-based electrolytes, J. Mater. Chem. 19 (2009) 82-88.   DOI
30 K. Edstrom, T. Gustafsson, J.O. Thomas, The cathode-electrolyte interface in a Liion battery, Electrochim. Acta 50 (2004) 397-403.   DOI
31 K. Kanamura, H. Tamura, Z.-I. Takehara, XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts, J. Electroanal. Chem. 333 (1992) 127-142.   DOI
32 J.-Y. Eom, I.-H. Jung, J.-H. Lee, Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries, J. Power Sources 196 (2011) 9810-9814.   DOI
33 Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100 (2001) 101-106.   DOI
34 B. Markovsky, A. Rodkin, G. Salitra, Y. Talyosef, D. Aurbach, H.-J. Kim, The impact of $Co^{2+}$ ions in solutions on the performance of $LiCoO_2$, Li, and lithiated graphite electrodes, J. Electrochem. Soc. 151 (2004) A1068-A1076.   DOI
35 S. Komaba, N. Kumagai, Y. Kataoka, Influence of manganese (II), cobalt (II), and nickel (II) additives in electrolyte on performance of graphite anode for lithium-ion batteries, Electrochim. Acta 47 (2002) 1229-1239.   DOI
36 B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future, Energy Environ. Sci. 4 (2011) 3287-3295.   DOI
37 A. Yoshino, The birth of the lithium-ion battery, Angew. Chem. Int. Ed. 51 (2012) 5798-5800.   DOI
38 J.W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Sources 195 (2010) 939-954.   DOI
39 M. Armand, J.-M. Tarascon, Building better batteries, Nature 451 (2008) 652-657.   DOI
40 A. Manthiram, J.C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives, Adv. Energy Mater. 6 (2016) 1501010.   DOI
41 T. Yim, K.S. Kang, J. Mun, S.H. Lim, S.-G. Woo, K.J. Kim, M.-S. Park, W. Cho, J.H. Song, Y.-K. Han, J.-S. Yu, Y.-J. Kim, Understanding the effects of a multifunctionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials, J. Power Sources 302 (2016) 431-438.   DOI
42 J. Li, L.E. Downie, L. Ma, W. Qiu, J.R. Dahn, Study of the failure mechanisms of $LiNi_{0.8}Mn_{0.1}Co_{0.1}O_2$ cathode material for lithium ion batteries, J. Electrochem. Soc. 162 (2015) A1401-A1408.   DOI
43 C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics 2 (2014) 132-154.   DOI
44 S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Understanding the degradation mechanisms of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material in lithium ion batteries, Adv. Energy Mater. 4 (2014) 1300787.   DOI
45 M. He, C.-C. Su, C. Peebles, Z. Feng, J.G. Connell, C. Liao, Y. Wang, I.A. Shkrob, Z. Zhang, Mechanistic insight in the function of phosphite additives for protection of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode in high voltage Li-Ion cells, ACS Appl. Mater. Interfaces 8 (2016) 11450-11458.   DOI
46 W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed. 54 (2015) 4440-4457.   DOI
47 Y. Koyama, H. Arai, I. Tanaka, Y. Uchimoto, Z. Ogumi, Defect chemistry in layered LiMO2 (M = Co, Ni, Mn, and $Li_{1/3}Mn_{2/3}$) by first-prinsiples calculations, Chem. Mater. 24 (2012) 3886-3894.   DOI
48 H.J. Yu, Y.M. Qian, M.R. Otani, D.M. Tang, S.H. Guo, Y.B. Zhu, H.S. Zhou, Study of the lithium/nickel ions exchange in the layered $LiNi_{0.42}Mn_{0.42}Co_{0.16}O_2$ cathode material for lithium ion batteries: experimental and first-principles calculations, Energy Environ. Sci. 7 (2014) 1068-1078.   DOI
49 H. Zheng, Q. Sun, G. Liu, X. Song, V.S. Battaglia, Correlation between dissolution behaviour and electrochemical cycling performance for $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$-based cells, J. Power Sources 207 (2012) 134-140.   DOI