Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.1.1

Formation Characteristics of Precipitated Calcium Carbonate by Carbonation Process  

Kim, Chiho (Department of Material Science and Engineering, Pusan National University)
Seok, Mingwang (Department of Material Science and Engineering, Pusan National University)
Kim, Yangdo (Department of Material Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.31, no.1, 2021 , pp. 1-7 More about this Journal
Abstract
The characteristics and morphology of precipitated calcium carbonate (PCC) particles produced by carbonation process with various experimental conditions are investigated in this study. The crystal structures of PCC formed by carbonation process are calcite and aragonite. The crystal structure of PCC particles synthesized without adipic acid additive is calcite only, regardless of the reaction temperature. Needle-like shape aragonite phase started to form at reactor temperature of 80℃ with the adipic acid additive. Particle size of the single phase calcite PCC synthesized without adipic acid additive is about 1 ~ 3 ㎛, with homogenous distribution. The aragonite PCC also shows uniform size distribution. The reaction temperature and concentration of adipic acid additive do not show any significant effects on the particle size distribution. Aragonite phase grown to a large aspect ratio of needle-like shape showed relatively improved whiteness. The measured whiteness value of single calcite phase is about 95.95, while that of the mixture of calcite and aragonite is about 99.11.
Keywords
precipitated calcium carbonate; carbonation process; calcite; aragonite; adipic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Feng, A. K. Yong and H. An, Mater. Sci. Eng. A, 445, 170 (2007).   DOI
2 K. S. Seo, C. Han, J. H. Wee, J. K. Park and J. W. Ahn, J. Cryst. Growth, 276, 680 (2005).   DOI
3 N. Passe-Coutrin, P. N'Guyen, R. Pelmard, A. Ouensanga and C. Bouchon, Thermochim. Acta., 1995, 265, 135 (1995).   DOI
4 H. Konno and Y. Nanri, Powder Technol., 129, 15 (2003).   DOI
5 J. G. Carmona, J. G. Morales, J. F. Sainz, E. Loste and R. R. Clememte, J. Cryst. Growth, 262, 479 (2004).   DOI
6 D. Chakraborty, V. K. Agarwal, S. K. Bhatia and J. Bellare, Ind. Eng. Chem. Res., 33, 2187 (1994).   DOI
7 M. D. Strutz, J. C. Pflieger and P. A. Duncan, Pulp Pap. Can., 92, 39 (1991).
8 S. Wachi and A. G. Jones, Chem. Eng. Sci., 46, 1027 (1991).   DOI
9 K. Uebo, R. Yamazaki and K. Yoshida, Adv. Powder Technol., 3, 71 (1992).   DOI
10 J. Peric, M. Vucak and R. Krstulovic, Adv. Sci. Technol. 3B, 1245 (1995).
11 H. Tanaka, H. Horiuchi and T. Ohkubo, Gypsum & Lime, 216, 314 (1988).
12 RM Santos, P Ceulemans and T Van Gerven, Chem. Eng. Sci., 90, 6, 715 (2012).
13 S. Goto, K. Suenaga, T. Kado and M. Fukuhara, J. Am. Ceram. Soc., 78, 2867 (1995).   DOI
14 K. Sasaki, M. Hongo and M. Tsunekawa, Shigen-to-Sozai, 113, 12, 173 (1998).
15 Z.Hu and Y.Deng, J. Colloid. Interface. Sci., 266, 359 (2003).   DOI