Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.1.23

Synthesis and Characterization of Silica Composite for Digital Light Processing  

Lee, Jin-Wook (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Nahm, Sahn (Department of Material Science and Engineering, Korea University)
Hwang, Kwang-Taek (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Jin-Ho (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Ung-Soo (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Han, Kyu-Sung (Ceramic ware Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.1, 2019 , pp. 23-29 More about this Journal
Abstract
Three-dimensional(3D) printing is a process for producing complex-shaped 3D objects by repeatedly stacking thin layers according to digital information designed in 3D structures. 3D printing can be classified based on the method and material of additive manufacturing process. Among the various 3D printing methods, digital light processing is an additive manufacturing technique which can fabricate complex 3D structures with high accuracy. Recently, there have been many efforts to use ceramic material for an additive manufacturing process. Generally, ceramic material shows low processability due to its high hardness and strength. The introduction of additive manufacturing techniques into the fabrication of ceramics will improve the low processability and enable the fabrication of complex shapes and parts. In this study, we synthesize silica composite material that can be applied to digital light processing. The rheological and photopolymeric properties of the synthesized silica composite are investigated in detail. 3D objects are also successfully produced using the silica composite and digital light processing.
Keywords
3D printing; silica composite; digital light processing; photopolymerization; additive manufacturing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. J. Bae and J. W. Halloran, Int. J. Appl. Ceram. Technol., 8, 1289 (2011).   DOI
2 C. Exposito Corcione, A. Greco, F. Mongagna, A. Liccuiulli and A. Maffezzoli, J. Mater. Sci., 40, 4899 (2005).   DOI
3 G. A, Brady and J. W. Halloran, Rapid Prototyp. J., 3, 61 (1997).   DOI
4 M. L. Griffith and W. Halloran, J. Am. Ceram. Soc., 79, 2601 (1996).   DOI
5 J. S. Yun, T. W. Park, Y. H. Jeong and J. H. Cho, Appl. Phys. A, 122, 629 (2016).   DOI
6 S. K. Song, J. H. Kim, K. S. Hwang and K. R. Ha, Korean Chem., 49, 181 (2011).   DOI
7 Z. Chen, D. Li, W. Zhou and L Wang, Proc IME B J Eng Manufact., 224, 641 (2010).   DOI
8 C. Hinczewski, S. Corbel and T. Chartier, J. Eur. Ceram. Soc., 18, 583 (1998).   DOI
9 K. C. Wu and J. W. Halloran, J. Mater. Sci., 40, 71 (2005).   DOI
10 E. Dorre and H. Hubner, Mater. Des., 7, 278, (1986).
11 R. Janssen, S. Scheppokat and N. Claussen, J. Eur. Ceram. Soc., 28, 1369 (2008).   DOI
12 L. Ferrage, G. Bertrand, P. Lenormand, D. Grossin and B. Ben-Nissan, J. Aust. Ceram. Soc., 53, 11 (2016).
13 R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu and Z. Xie, Ceram. Int., 44, 3412 (2018).   DOI
14 T. Chartier, A. Badev, Y. Abouliatim, P. Lebaudy and L. Lecamp, J. Eur. Ceram. Soc., 32, 1625 (2012).   DOI
15 J. D. Cho, H. T. Ju and J. W. Hong, J. Polym. Sci., Part A: Polym. Chem., 43, 658 (2005).   DOI