• Title/Summary/Keyword: Additive functional equation

Search Result 104, Processing Time 0.026 seconds

GENERALIZED ULAM-HYERS STABILITY OF C*-TERNARY ALGEBRA 3-HOMOMORPHISMS FOR A FUNCTIONAL EQUATION

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.147-162
    • /
    • 2011
  • In this paper, we investigate the Ulam-Hyers stability of $C^{\star}$-ternary algebra 3-homomorphisms for the functional equation $$f(x_1+x_2,y_1+y_2,z_1+z_2)=\;\displaystyle\sum_{1{\leq}i,j,k{\leq}2}\;f(x_i,y_j,z_k)$$ in $C^{\star}$-ternary algebras.

STABILITY OF TRIGONOMETRIC TYPE FUNCTIONAL EQUATIONS IN RESTRICTED DOMAINS

  • Chung, Jae-Young
    • The Pure and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.231-244
    • /
    • 2011
  • We prove the Hyers-Ulam stability for trigonometric type functional inequalities in restricted domains with time variables. As consequences of the result we obtain asymptotic behaviors of the inequalities and stability of related functional inequalities in almost everywhere sense.

APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.195-209
    • /
    • 2010
  • In this paper, we prove the generalized Hyers-Ulam stability of bi-homomorphisms in $C^*$-ternary algebras and of bi-derivations on $C^*$-ternary algebras for the following bi-additive functional equation f(x + y, z - w) + f(x - y, z + w) = 2f(x, z) - 2f(y, w). This is applied to investigate bi-isomorphisms between $C^*$-ternary algebras.

ON THE GENERALIZED HYERS-ULAM STABILITY OF A CUBIC FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Lee, Sang-Baek
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.189-196
    • /
    • 2006
  • The generalized Hyers-Ulam stability problems of the cubic functional equation f(x + y + z) + f(x + y - z) + 2f(x - y) + 4f(y) = f(x - y + z) + f(x - y - z) +2f(x + y) + 2f(y + z) + 2f(y - z) shall be treated under the approximately odd condition and the behavior of the cubic mappings and the additive mappings shall be investigated. The generalized Hyers-Ulam stability problem for functional equations had been posed by Th.M. Rassias and J. Tabor [7] in 1992.

  • PDF

SOLUTIONS AND STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS ON AN AMENABLE GROUP WITH AN INVOLUTIVE AUTOMORPHISM

  • Ajebbar, Omar;Elqorachi, Elhoucien
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.55-82
    • /
    • 2019
  • Given ${\sigma}:G{\rightarrow}G$ an involutive automorphism of a semigroup G, we study the solutions and stability of the following functional equations $$f(x{\sigma}(y))=f(x)g(y)+g(x)f(y),\;x,y{\in}G,\\f(x{\sigma}(y))=f(x)f(y)-g(x)g(y),\;x,y{\in}G$$ and $$f(x{\sigma}(y))=f(x)g(y)-g(x)f(y),\;x,y{\in}G$$, from the theory of trigonometric functional equations. (1) We determine the solutions when G is a semigroup generated by its squares. (2) We obtain the stability results for these equations, when G is an amenable group.

STABILITY OF FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES: A FIXED POINT APPROACH

  • Park, Choonkil;Hur, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.413-424
    • /
    • 2008
  • In [21], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\parallel}\frac{1}{n}\sum\limits_{i=1}^{n}x_i{\parallel}^2+\sum\limits_{i=1}^{n}{\parallel}x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j{\parallel}^2=\sum\limits_{i=1}^{n}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\dots},x_n{\in}V$. We consider the functional equation $$nf(\frac{1}{n}\sum\limits^n_{i=1}x_i)+\sum\limits_{i=1}^{n}f(x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j)=\sum\limits_{i=1}^nf(x_i)$$ Using fixed point methods, we prove the generalized Hyers-Ulam stability of the functional equation $$(1)\;2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})=f(x)+f(y)$$.

  • PDF