Browse > Article
http://dx.doi.org/10.5666/KMJ.2013.53.4.646

Approximately Orthogonal Additive Set-valued Mappings  

Mirmostafaee, Alireza Kamel (Center of Excellence in Analysis on Algebraic Structures, Department of pure Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad)
Mahdavi, Mostafa (Center of Excellence in Analysis on Algebraic Structures, Department of pure Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad)
Publication Information
Kyungpook Mathematical Journal / v.53, no.4, 2013 , pp. 639-646 More about this Journal
Abstract
We investigate the stability of orthogonally additive set-valued functional equation $$F(x+y)=F(x)+F(y)(x{\perp}y)$$ in Hausdorff topology on closed convex subsets of a Banach space.
Keywords
Set-valued mappings; orthogonal space; Hausdorff metric; Hyers-Ulam stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1(1935), 169-172.   DOI
2 J. Brzdek, D. Popa, B. Xu, Selection of set-valued maps satisfying a linear inclusion in single variable, Nonlinear Anal. 74(2011), 324-330.   DOI   ScienceOn
3 C. Casting and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Note in Math. 580(1977).
4 S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co. Pte. Ltd (2002).
5 M. Eshaghi Gordji, S. Abbaszadeh and C. Park, On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces, J. Ineq. Appl., 2009(2009), Article ID 153084, 26 pages.
6 M. Eshaghi and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal. 71(2009), 5629?5643.   DOI   ScienceOn
7 R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43(1995), 143?151.
8 Z. Gajda and R. Ger, Subadditive mulifunctions and Hyers-Ulam stability, Numer. Math. 80(1987), 281-291.
9 M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl., 318(1)(2006), 221-223.
10 H. Radstrom, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc., 3(1952), 165-169.   DOI
11 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27(1941), 222-224.   DOI   ScienceOn
12 R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61(1947), 265?292.   DOI   ScienceOn
13 C. Park, On the stability of the orthogonally quartic functional equation, Bull. Iran. Math. Soc. 31(1)(2005), 63-70.
14 J. Sikorska, Generalized orthogonal stability of some functional equations, J. Inequal. Appl. (2006), Art. ID 12404, 23 pp.
15 A. K. Mirmostafaee, Approximately additive mappings in non-Archimedean normed spaces, Bull. Korean Math. Soc. 46(2009), No. 2, 387-400.   과학기술학회마을   DOI   ScienceOn
16 A. K. Mirmostafaee, Hyers-Ulam stability of cubic mappings in non-Archimedean normed spaces, Kyungpook Math. J. 50(2)(2010), 315-327.   과학기술학회마을   DOI   ScienceOn
17 K. Nikodem, On quadratic set-valued functions, Publ. Math. Debrecen 30(1983), 297-301.
18 C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275(2002), 711?720.   DOI   ScienceOn
19 D. Popa, A property of a functional inclusion connected with Hyers-Ulam stability, J. Math. Inequal. 4(2009), 591-598.
20 J. M. Rassias, The Ulam stability problem in approximation of approximately quadratic mappings by quartic mappings, Journal of Inequalities in Pure and Applied Mathematics, Issue 3, Article 52, 5(2004).
21 Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
22 J. Ratz, On orthogonally additive mappings, Aequationes Math. 28(1985), 35-49.   DOI
23 A. Smajdor, Additive selections of superadditive set-valued functions, Aequations Math. 39(1990), 121-128.   DOI
24 S. M. Ulam, Problems in Modern Mathematics, Science ed., John Wiley & Sons, New York, 1964 (Chapter VI, Some Questions in Analysis: Section 1,