1 |
G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1(1935), 169-172.
DOI
|
2 |
J. Brzdek, D. Popa, B. Xu, Selection of set-valued maps satisfying a linear inclusion in single variable, Nonlinear Anal. 74(2011), 324-330.
DOI
ScienceOn
|
3 |
C. Casting and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Note in Math. 580(1977).
|
4 |
S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co. Pte. Ltd (2002).
|
5 |
M. Eshaghi Gordji, S. Abbaszadeh and C. Park, On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces, J. Ineq. Appl., 2009(2009), Article ID 153084, 26 pages.
|
6 |
M. Eshaghi and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal. 71(2009), 5629?5643.
DOI
ScienceOn
|
7 |
R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43(1995), 143?151.
|
8 |
Z. Gajda and R. Ger, Subadditive mulifunctions and Hyers-Ulam stability, Numer. Math. 80(1987), 281-291.
|
9 |
M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl., 318(1)(2006), 221-223.
|
10 |
H. Radstrom, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc., 3(1952), 165-169.
DOI
|
11 |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27(1941), 222-224.
DOI
ScienceOn
|
12 |
R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61(1947), 265?292.
DOI
ScienceOn
|
13 |
C. Park, On the stability of the orthogonally quartic functional equation, Bull. Iran. Math. Soc. 31(1)(2005), 63-70.
|
14 |
J. Sikorska, Generalized orthogonal stability of some functional equations, J. Inequal. Appl. (2006), Art. ID 12404, 23 pp.
|
15 |
A. K. Mirmostafaee, Approximately additive mappings in non-Archimedean normed spaces, Bull. Korean Math. Soc. 46(2009), No. 2, 387-400.
과학기술학회마을
DOI
ScienceOn
|
16 |
A. K. Mirmostafaee, Hyers-Ulam stability of cubic mappings in non-Archimedean normed spaces, Kyungpook Math. J. 50(2)(2010), 315-327.
과학기술학회마을
DOI
ScienceOn
|
17 |
K. Nikodem, On quadratic set-valued functions, Publ. Math. Debrecen 30(1983), 297-301.
|
18 |
C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275(2002), 711?720.
DOI
ScienceOn
|
19 |
D. Popa, A property of a functional inclusion connected with Hyers-Ulam stability, J. Math. Inequal. 4(2009), 591-598.
|
20 |
J. M. Rassias, The Ulam stability problem in approximation of approximately quadratic mappings by quartic mappings, Journal of Inequalities in Pure and Applied Mathematics, Issue 3, Article 52, 5(2004).
|
21 |
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
|
22 |
J. Ratz, On orthogonally additive mappings, Aequationes Math. 28(1985), 35-49.
DOI
|
23 |
A. Smajdor, Additive selections of superadditive set-valued functions, Aequations Math. 39(1990), 121-128.
DOI
|
24 |
S. M. Ulam, Problems in Modern Mathematics, Science ed., John Wiley & Sons, New York, 1964 (Chapter VI, Some Questions in Analysis: Section 1,
|