• 제목/요약/키워드: Adaptive learning

검색결과 1,003건 처리시간 0.028초

유비쿼터스 환경에서 적응적 학습을 위한 사용자 모델 확장 (User Model Expansion for Adaptive Learning in Ubiquitous Environment)

  • 정화영;김윤호
    • 한국항행학회논문지
    • /
    • 제14권2호
    • /
    • pp.278-283
    • /
    • 2010
  • 본 논문에서는 유비쿼터스 환경에서 학습자 맞춤형 학습을 지원하기 위한 사용자 모델 확장의 프레임워크를 설계 및 제시하였다. 이를 위해 기존의 모델인 도메인 모델, 사용자 모델, 적용 모델, 인터액션 모델을 LMS(Learning Management System)와 LCMS(Learning Contents Management System)에 연동하였다. 사용자 모델의 확장인 학습자 정보 관리 프로세스를 LMS와 적응적 시스템 사이에 두었으며, 이를 u-러닝에서 사용할 수 있도록 u-LMS와 연결하였다. u-LMS와 u-LCMS는 학습자의 접속 및 요구에 따라 적절한 변환을 통해 이동형 기기에 제공할 수 있도록 하였다.

EER-ASSL: Combining Rollback Learning and Deep Learning for Rapid Adaptive Object Detection

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4776-4794
    • /
    • 2020
  • We propose a rapid adaptive learning framework for streaming object detection, called EER-ASSL. The method combines the expected error reduction (EER) dependent rollback learning and the active semi-supervised learning (ASSL) for a rapid adaptive CNN detector. Most CNN object detectors are built on the assumption of static data distribution. However, images are often noisy and biased, and the data distribution is imbalanced in a real world environment. The proposed method consists of collaborative sampling and EER-ASSL. The EER-ASSL utilizes the active learning (AL) and rollback based semi-supervised learning (SSL). The AL allows us to select more informative and representative samples measuring uncertainty and diversity. The SSL divides the selected streaming image samples into the bins and each bin repeatedly transfers the discriminative knowledge of the EER and CNN models to the next bin until convergence and incorporation with the EER rollback learning algorithm is achieved. The EER models provide a rapid short-term myopic adaptation and the CNN models an incremental long-term performance improvement. EER-ASSL can overcome noisy and biased labels in varying data distribution. Extensive experiments shows that EER-ASSL obtained 70.9 mAP compared to state-of-the-art technology such as Faster RCNN, SSD300, and YOLOv2.

인공지능 기반으로 맞춤 및 적응형 학습 시스템의 고등 교육에서의 적용효과 (Effects of AI-Based Personalized Adaptive Learning System in Higher Education)

  • 조윤정
    • 정보교육학회논문지
    • /
    • 제26권4호
    • /
    • pp.249-263
    • /
    • 2022
  • 인공지능 기반 맞춤 및 적응형 학습을 대학원 이상의 수업에 적용에 따른 실증 연구는 매우 부족한 상황이다. 본 연구는, 인공지능 기반 맞춤 및 적응형 학습을 대학원 수업에 적용한 경우, 만족도 및 충성도를 연구 했으며, 테크놀로지관련 인식, 컨텐츠 및 시스템 특성에 대한 인식, 및 인공지능 기반 맞춤형 학습과 강의를 병행한 교육에 대한 전반적인 인식이 만족도, 효과성, 유용성, 동기부여, 및 다른 수업에 적용에 따른 의사에 어떻게 영향을 주는 지 조사하였다. 인공지능 기반 맞춤 및 적응형 시스템인 알렉스를 적용한 강의 직후 온라인 설문조사를 통한 데이터를 사용하였으며, 요인분석, 회귀분석, 분산분석 등을 활용하여 가설검증을 하였다. 본 연구의 결과로, 어떤 요인들이 유의하게 영향을 주는 지와 효과의 크기를 비교 검증하였고, 더불어 만족도가 충성도에 영향을 미치는 이론이 교육효과에도 적용됨을 입증하였다. 또한, 인공지능 기반 맞춤 및 적응형 시스템의 고등교육 특히 대학원 수업에도 효과가 있고, 고객관계관리에 도움이 된다는 시사점을 제시한다.

Adaptive Learning Path Recommendation based on Graph Theory and an Improved Immune Algorithm

  • BIAN, Cun-Ling;WANG, De-Liang;LIU, Shi-Yu;LU, Wei-Gang;DONG, Jun-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2277-2298
    • /
    • 2019
  • Adaptive learning in e-learning has garnered researchers' interest. In it, learning resources could be recommended automatically to achieve a personalized learning experience. There are various ways to realize it. One of the realistic ways is adaptive learning path recommendation, in which learning resources are provided according to learners' requirements. This paper summarizes existing works and proposes an innovative approach. Firstly, a learner-centred concept map is created using graph theory based on the features of the learners and concepts. Then, the approach generates a linear concept sequence from the concept map using the proposed traversal algorithm. Finally, Learning Objects (LOs), which are the smallest concrete units that make up a learning path, are organized based on the concept sequences. In order to realize this step, we model it as a multi-objective combinatorial optimization problem, and an improved immune algorithm (IIA) is proposed to solve it. In the experimental stage, a series of simulated experiments are conducted on nine datasets with different levels of complexity. The results show that the proposed algorithm increases the computational efficiency and effectiveness. Moreover, an empirical study is carried out to validate the proposed approach from a pedagogical view. Compared with a self-selection based approach and the other evolutionary algorithm based approaches, the proposed approach produces better outcomes in terms of learners' homework, final exam grades and satisfaction.

Human Adaptive Device Development based on TD method for Smart Home

  • Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1072-1075
    • /
    • 2005
  • This paper presents that TD method is applied to the human adaptive devices for smart home with context awareness (or recognition) technique. For smart home, the very important problem is how the appliances (or devices) can adapt to user. Since there are many humans to manage home appliances (or devices), managing the appliances automatically is difficult. Moreover, making the users be satisfied by the automatically managed devices is much more difficult. In order to do so, we can use several methods, fuzzy controller, neural network, reinforcement learning, etc. Though the some methods could be used, in this case (in dynamic environment), reinforcement learning is appropriate. Among some reinforcement learning methods, we select the Temporal Difference learning method as a core algorithm for adapting the devices to user. Since this paper assumes the environment is a smart home, we simply explained about the context awareness. Also, we treated with the TD method briefly and implement an example by VC++. Thereafter, we dealt with how the devices can be applied to this problem.

  • PDF

A new method to detect attacks on the Internet of Things (IoT) using adaptive learning based on cellular learning automata

  • Dogani, Javad;Farahmand, Mahdieh;Daryanavard, Hassan
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.155-167
    • /
    • 2022
  • The Internet of Things (IoT) is a new paradigm that connects physical and virtual objects from various domains such as home automation, industrial processes, human health, and monitoring. IoT sensors receive information from their environment and forward it to their neighboring nodes. However, the large amounts of exchanged data are vulnerable to attacks that reduce the network performance. Most of the previous security methods for IoT have neglected the energy consumption of IoT, thereby affecting the performance and reducing the network lifetime. This paper presents a new multistep routing protocol based on cellular learning automata. The network lifetime is improved by a performance-based adaptive reward and fine parameters. Nodes can vote on the reliability of their neighbors, achieving network reliability and a reasonable level of security. Overall, the proposed method balances the security and reliability with the energy consumption of the network.

수학 학습용 애플리케이션 유형 및 내용 분석 (An Analysis of Types and Contents on Mathmatics Learning Application)

  • 허난
    • East Asian mathematical journal
    • /
    • 제33권4호
    • /
    • pp.413-429
    • /
    • 2017
  • This study is a basic study for developing a mathematical learning application program that can be used in smart devices for adaptive learning. We selected 20 mathematical learning applications including middle school contents and analyzed learning types. And we analyzed the contents and the learning process. As a result, most learning types of mathematics learning applications were problem-centered. Contents analysis results showed that the most applications have achievement goals. The factors that induce interest in learning were lacking and feedback was not provided sufficiently. Analysis of the learning process showed that most of the math learning applications were classified according to their purpose and characteristics.

Understanding Technology-Enhanced Construction Project Delivery: perspective from expansive learning and adaptive expertise

  • Sackey, Enoch;Kwadzo, Dzifa A.M.
    • Journal of Construction Engineering and Project Management
    • /
    • 제7권3호
    • /
    • pp.26-38
    • /
    • 2017
  • The architecture, engineering, and construction (AEC) industry is yet to formulate a holistic strategy to realign the evolving technological infrastructures with organisational ambitions and adaptive knowledge of the workforce. This study attempts to create an understanding of the underlying processes adopted by technology-enhanced construction organisations to disseminate and maintain knowledge within the workforce in order to keep pace with the evolving construction technologies. The study adopted expansive learning and adaptive expertise constructs to help better explain workplace learning support structures for organisational effectiveness in a turbulent situation. The two theories were tailored to empirically evaluate three case study construction organisations that have embarked on technology-enabled organisational changes. The study concluded on the creation of a facilitating workplace learning environment to enable the workforce to adapt into and resolve any inherent contradictions and cognitive ambiguities of the changing organisational conditions. This could ensure that novel and conflicting features of the emerging technologies can be adapted across the myriad multi-functional project activities in order to expand the frontiers of the technological capabilities to address the eminent issues confronting the AEC sector.

Adaptive Compressed Sensing과 Dictionary Learning을 이용한 프레임 기반 음성신호의 복원에 대한 연구 (A Study on the Reconstruction of a Frame Based Speech Signal through Dictionary Learning and Adaptive Compressed Sensing)

  • 정성문;임동민
    • 한국통신학회논문지
    • /
    • 제37A권12호
    • /
    • pp.1122-1132
    • /
    • 2012
  • 압축센싱은 이미지, 음성신호, 레이더 등 많은 분야에 적용되고 있다. 압축센싱은 주로 통계적 특성이 시불변인 신호에 적용되고 있으며, 측정 데이터를 줄여 압축률을 높일수록 복원에러가 증가한다. 이와 같은 문제점들을 해결하기 위해 음성신호를 프레임 단위로 나누어 병렬로 처리하였으며, dictionary learning을 이용하여 프레임들을 sparse하게 만들고, sparse 계수 벡터와 그 복원값의 차를 이용하여 압축센싱 복원행렬을 적응적으로 만든 적응압축센싱을 적용하였다. 이를 통해 통계적 특성이 시변인 신호도 압축센싱을 이용하여 빠르고 정확한 복원이 가능함을 확인할 수 있었다.

뉴로제어 및 반복학습제어 기법을 결합한 미지 비선형시스템의 적응학습제어 (Adaptive Learning Control fo rUnknown Monlinear Systems by Combining Neuro Control and Iterative Learning Control)

  • 최진영;박현주
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.9-15
    • /
    • 1998
  • 본 논문은 뉴로제어 및 반복학습 제어기법에 기반한 미지의 비선형시스템의 적응학습제어 방법을 제안한다. 제안된 제어 시스템에서 반복학습제어기는 새로운 기준 궤적에 대해 시스템의 출력이 원하는 궤적으로 정확히 수렴하도록 하는 적응과 단기간 제어정보를 기억하는 기능을 수행한다. 상대차수만 알고 있는 미지 시스템에 대한 박복학습 법칙이 학습이득은 신경회로망을 이용하여 추정된다. 반복학습제어기에 의해 습득된 제어정보는 장기메모리에 기반한 앞먹임 뉴로제어기로 이전되어 누적기억됨으로써 과거에 겸험된 기준 궤적에 대해서는 신속하게 추종할 수 있도록 한다. 2자유도 매니퓰레이터에 적용하여 제안된 기법의 타당성을 검증한다.

  • PDF